

Kyiv School of Economics

Descriptive statistics

Ass. Professor Andriy Stavytskyy

Outline

- Sample
- Descriptive statistics

What is statistics?

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data.

Assumptions:

- The observations are the values of a random variable
- The sample represents the population from which it is selected

Basic concepts

- Population: Collection of objects for which a conclusion shall be made (can be human beings but also a collection of atoms when applied in physics)
- Sample: a representative part/sub-set of the population
- Random sample: elements of the population drawn randomly and independently of each other

Example: "Mietspiegel" (= statistics of rents) for the city of Bonn

- Population: all rooms, flats etc. for rent in Bonn (← too many to investigate all)
- Sample: selected part; all flats from Poppelsdorf
- Random sample: Investigation of n = 100, 200,... random objects from Bonn

Population and sample

Population parameters and sample statistics.

Frequencies – 1

- Absolute frequency n_i:
 - Number of obersvations with attribute value i (counts)
- Relative frequency h_i:
 - Portion of elements with attribute value i
 - To be computed as absolute frequency devided by total number of objects
 N: n_i / N
 - Relative frequencies lie between 0 and 1
 - Relative frequencies have to add up to 1 (<- can be used to check computation)

Example

AB0 blood group

	value	tally sheet	absolute frequency n i		relative frequency h _i	
			Kyiv	Lviv	Kyiv	Lviv
1	0	₩ ₩ ₩	17	78	0.34	0.39
2	A1	₩₩₩₩	19	76	0.38	0.38
3	A2	 	6	20	0.12	0.10
4	В	#	5	18	0.10	0.09
5	A1B		2	6	0.04	0.03
6	A2B		1	2	0.02	0.01
7	other		0	0	0.00	0.00
			N = 50	200	1.00	1.00

k $\sum n_i = N$ i=1

$$h_i = \frac{n_i}{N}$$

$$0 \le h_i \le 1$$

$$\sum_{i=1}^k h_i = 1$$

200

Frequencies - 2

• Cumulative frequency:

- Sum of all frequencies up to a given value i.
- Denoted as N_i for absolute frequencies and denoted as H_i for relative frequencies
- Often used when values are subdivided into classes

• Classification:

- Arrangement of attribute values into disjoint groups, so called "classes"
- Classes are disjoint, i.e. non-overlapping, and neighbouring intervals of attribute values, which are defined by a lower and an upper bound. Neighbouring values implies that each value belongs to a class and does not lie outiside (completeness of the classification).

Example

height [cm]

Class	Class limits	Tally shoet	frequ	iency	Cumulative frequency		
number i	(a _{i-1} ; a _i]	Tally Sheet	absolute n _i	relative h _i	absolute N _i	relative H _i	
1	≤ 150		0	0.00	0	0.00	
2	(150; 160]	₩	5	0.05	5	0.05	
3	(160; 170]		30	0.30	35	0.35	
4	(170; 180]		35	0.35	70	0.70	
5	(180; 190]		25	0.25	95	0.95	
6	(190; 200]	₩	5	0.05	100	1.00	
7	> 200		0	0.00	100	1.00	

Graphical representation – 1

- Pie chart
 - Shows absolute frequencies
 - Example: blood groups

Graphical representation – 2

- Bar chart
 - Shows relative frequencies
 - Example: blood groups

Empirical distribution function – 1

• Representation of cumulative frequencies with empirical

distribution function F

Discrete trait: Number of Children

	Number of	Tally sheet	Freque	encies	Cumulative frequencies		
	children		absolute n _i	relative h _i	absolute N _i	relative H _i	
1	0	#	5	0.10	5	0.10	
2	1	₩₩₩₩	20	0.40	25	0.50	
3	2	\#\#\#	15	0.30	40	0.80	
4	3	#	5	0.10	45	0.90	
5	4		3	0.06	48	0.96	
6	>4		2	0.04	50	1.00	

1.00

Empirical distribution function – 2

Number of children

- Construction:
 - Data is subdivided into classes
 - Surface area of columns is proportional to the respective frequencies
 - Columns are neighbouring since classes are neighbouring

Example: *Height [cm]*

Measures of central tendency

A number to characterize the "center" of the data

• Most important:

- Mean
- Median

Median

• Sample: $x_1, x_2, \dots, x_n \rightarrow$ Order according to: $x_1 \leq x_2 \leq \dots \leq x_n < x_n$ x_n \rightarrow Ordered sample: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ • Median $\tilde{x} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{in case n is odd (value in the "middle")} \\ \frac{1}{2} \left[x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right], & \text{in case n is even} \\ \frac{\text{sample} \text{ ranks}}{2} \end{cases}$ sample ranks $x_{(1)}=3$ $x_{(2)}=4$ $x_{(3)}=5$ $x_{(4)}=6$ $x_{(5)}=8$ $x_{(5)}=8$ $x_{(1)}=3$ n = 8 even: $x_{1}=5$ $x_{1}=5$ $x_{1}=5$ $x_{2}=9$ $x_{2}=4$ $x_{3}=3$ $x_{3}=3$ $x_{3}=5$ $x_{4}=8$ $x_{5}=19$ $x_{6}=4$ $x_{6}=8$ $x_{6}=8$ $x_{6}=8$ $x_{1}=2$ $x_{1}=5$ $x_{1}=3$ $x_{2}=9$ $x_{2}=9$ $x_{3}=3$ $x_{3}=5$ $x_{4}=8$ $x_{4}=8$ $x_{5}=77$ $x_{6}=4$ $x_{1}=9$ $x_{1}=7$ $x_{1}=6.5$ sample x₁=5 x₂ =9 x₃=3 x₄=8 $x_{(6)} = 8$ $x_{(7)} = 9$ x₅=19 x₍₆₎=9 $x_6 = 4$ x₇=6 x₍₇₎=19 X₇=6 $X_8 = 7$ $x_{(8)} = 19$

Median for interval sample

$$Me = y_{i} + h_{i} \frac{\frac{n}{2} - \sum_{k=1}^{i-1} m_{k}}{m_{i}}$$

Mean

- Mean
 - Sample: $x_1, x_2, ..., x_n$
 - Sample size: n

• Mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Comparison of median and mean

- Both samples have median 2500
- $\bar{x} = 3000$ and $\bar{x'} = 5000$ are the mean values
- Mean can strongly be influenced by a single value
- Median is more robust against extreme values ("outliers")
- Nevertheless, the mean is more often used in practice since it has other desirable properties.

i	x _i	x'_i	ordered x_i and x'_i
1	2000	2000	1500
2	5000	15000	2000
3	4000	4000	2500
4	1500	1500	4000
5	2500	2500	5000 / 15000

Mean vs. median

Center of gravity vs. half of the area

Amount of variation of the data

→ The mean (or median) is not sufficent to describe a sample

Measures of dispersion and spread

- Measures of dispersion and spread:
 - Numbers to characterize the amount variation around the center (= mean)

• Most important:

- Minimum, maximum, range (dispersion)
- Empirical variance (spread)
- Empirical standard deviation (spread)

Range

minimum: min = $x_{(1)}$ maximum: max = $x_{(n)}$ range: $R = x_{(n)} - x_{(1)} = 16$

Variance and standard deviation

•A measure to express the spread around the center (mean) by a single value

•The squared deviation $(x_i - \bar{x})^2$ of each attribute value x_i from the mean is considered.

•Formula for the empirical variance from a sample of n elements:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

•The empircal standard deviation s is just the square root of the variance,

$$s = \sqrt{s^2}$$

Why divide by n - 1 instead of n?

Example:

~1	=	75
x ₂	=	2
х ₃	=	270
X ₄	=	$4 \cdot 100 - 75 - 2 - 270 = 53$
n	=	4
\overline{X}	=	100
	×1 X ₂ X ₃ X ₄ n x	$x_{1} = x_{2} = x_{2} = x_{3} = x_{4} = x_{4} = n = \overline{x} = \overline{x} = x_{4} = x_$

 $x_4 = 53$ is not free, but given by other values when the mean is known.

s² has (n-1) degrees of freedom (f)

$$s^{2} = \frac{1}{f} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Standard errors of estimates

 For an estimator T for parameter θ, its standard error is Std(T), and it indicates the precision and reliability of T

Example: interval sample

• Calculate mean, variance, median for the sample:

Interval	[-2; 0)	[0; 4)	[4; 6)	[6; 10]
m_i	5	10	20	15

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{d} y_i^* m_i = \frac{1}{50} \left(-1 \cdot 5 + 2 \cdot 10 + 5 \cdot 20 + 8 \cdot 15 \right) = 4,7.$$

$$M_2 = \frac{1}{n} \sum_{i=1}^{d} \left(y_i^* \right)^2 m_i = \frac{1}{50} \left(\left(-1 \right)^2 \cdot 5 + 2^2 \cdot 10 + 5^2 \cdot 20 + 8^2 \cdot 15 \right) = 30,1.$$

$$S^2 = M_2 - \left(\overline{x} \right)^2 = 30,1 - \left(4,7 \right)^2 = 8,01.$$

$$\hat{S}^2 = \frac{n}{n-1} S^2 = \frac{50}{49} \cdot 8,01 \approx 8,17.$$

$$Me = 4 + 2 \cdot \frac{25 - 15}{20} = 5.$$

Example: Discrete case - 1

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

y _i	0	1	2	3	4	5	7
m _i	8	17	16	10	6	2	1

$$\overline{x} = \frac{1}{8+17+16+10+6+2+1} \cdot \left(0 \cdot 8 + 1 \cdot 17 + 2 \cdot 16 + 3 \cdot 10 + 4 \cdot 6 + 5 \cdot 2 + 7 \cdot 1\right) = \frac{1}{60} \cdot 120 = 2$$

$$M_{2} = \frac{1}{60} \cdot \left(0^{2} \cdot 8 + 1^{2} \cdot 17 + 2^{2} \cdot 16 + 3^{2} \cdot 10 + 4^{2} \cdot 6 + 5^{2} \cdot 2 + 7^{2} \cdot 1\right) = \frac{1}{60} \cdot 366 = 6.1$$

$$S^2 = M_2 - \overline{x}^2 = 6.1 - 2^2 = 2.1$$

$$\hat{S}^2 = \frac{n}{n-1}S^2 = \frac{60}{59} \cdot 2.1 = 2.14$$

Example: Discrete case – 2

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

Example: Discrete case - 3

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

REVIEW

Population and sample

Population parameters and sample statistics.

Descriptive statistics

- Most important:
 - Mean
 - Median
 - Variance
 - Standard Deviation
 - Range
 - Minimum
 - Maximum

Thank you for attention!

