Descriptive statistics

Ass. Professor Andriy Stavytskyy

Outline

- Sample
- Descriptive statistics

What is statistics?

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data.

Assumptions:

- The observations are the values of a random variable
- The sample represents the population from which it is selected

Basic concepts

- Population: Collection of objects for which a conclusion shall be made (can be human beings but also a collection of atoms when applied in physics)
- Sample: a representative part/sub-set of the population
- Random sample: elements of the population drawn randomly and independently of each other

Example: „Mietspiegel" (= statistics of rents) for the city of Bonn

- Population: all rooms, flats etc. for rent in Bonn (\leftarrow too many to investigate all)
- Sample: selected part; all flats from Poppelsdorf
- Random sample: Investigation of $n=100,200, \ldots$ random objects from Bonn

Population and sample

Population parameters and sample statistics.

Frequencies - 1

- Absolute frequency n_{i} :
- Number of obersvations with attribute value i (counts)
- Relative frequency h_{i} :
- Portion of elements with attribute value i
- To be computed as absolute frequency devided by total number of objects $\mathrm{N}: \mathrm{n}_{\mathrm{i}} / \mathrm{N}$
- Relative frequencies lie between 0 and 1
- Relative frequencies have to add up to 1 (<- can be used to check computation)

Example

ABO blood group

Frequencies-2

- Cumulative frequency:
- Sum of all frequencies up to a given value i.
- Denoted as N_{i} for absolute frequencies and denoted as H_{i} for relative frequencies
- Often used when values are subdivided into classes
- Classification:
- Arrangement of attribute values into disjoint groups, so called „classes"
- Classes are disjoint, i.e. non-overlapping, and neighbouring intervals of attribute values, which are defined by a lower and an upper bound. Neighbouring values implies that each value belongs to a class and does not lie outiside (completeness of the classification).

Example

height [cm]

Class number i	Class limits$\left(a_{i-1} ; a_{i}\right]$	Tally sheet	frequency		Cumulative frequency	
			absolute n_{i}	relative hi_{i}	absolute N_{i}	relative H_{i}
1	≤ 150		0	0.00	0	0.00
2	(150; 160]	\#\#t	5	0.05	5	0.05
3	(160; 170]		30	0.30	35	0.35
4	(170; 180]		35	0.35	70	0.70
5	(180; 190]		25	0.25	95	0.95
6	(190; 200]	WIt	5	0.05	100	1.00
7	> 200		0	0.00	100	1.00
$\mathrm{N}_{\mathrm{i}}=\sum_{\mathrm{k}=1}^{\mathrm{i}} \mathrm{n}_{\mathrm{k}}$			$N=100$	1,00		

Graphical representation - 1

- Pie chart
- Shows absolute frequencies
- Example: blood groups

Graphical representation - 2

- Bar chart

- Shows relative frequencies
- Example: blood groups

Empirical distribution function - 1

- Representation of cumulative frequencies with empirical distribution function F
- Discrete trait: Number of Children

	Number of children	Tally sheet	Frequencies		Cumulative frequencies			
			$\begin{gathered} \text { absolute } \\ \mathrm{n}_{\mathrm{i}} \\ \hline \end{gathered}$	relative h_{i}	absolute N_{i}	relative H_{i}		
1	0	WIt	5	0.10	5	0.10		
2	1		20	0.40	25	0.50		
3	2	WH WIT WI	15	0.30	40	0.80		
4	3	\#\#	5	0.10	45	0.90		
5	4	\|			3	0.06	48	0.96
6	>4	\|		2	0.04	50	1.00	

Empirical distribution function - 2

Number of children

F: Empirical distribution function
Since the attribute is quantitative discrete, we obtain a step function

Histograms - 1

- Construction:
- Data is subdivided into classes
- Surface area of columns is proportional to the respective frequencies
- Columns are neighbouring since classes are neighbouring

Histograms - 2

Example: Height [cm]

Histograms - 3

Histograms - 4

empirical density function f

$$
f=F^{\prime}
$$

empirical distribution function F

Measures of central tendency

A number to characterize the „center" of the data

- Most important:
- Mean
- Median

Median

- Sample: $x_{1}, x_{2}, \ldots, x_{n} \rightarrow$ Order according to: $x_{1} \leq x_{2} \leq \cdots \leq$ x_{n}
\rightarrow Ordered sample: $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$
- Median $\tilde{x}= \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & \text { in case } n \text { is odd (} \\ \frac{1}{2}\left[x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}\right], & \text { in case } n \text { is even } \\ \text { sample ranks }\end{cases}$

sample	ranks
$\mathrm{x}_{1}=5$	$\mathrm{x}_{(1)}=3$
$x_{2}=9$	$\mathrm{x}_{(2)}=4$
$x_{3}=3$	$\mathrm{x}_{(3)}=5$
$\mathrm{x}_{4}=8$	$\mathrm{x}_{(4)}=6$
$\mathrm{X}_{5}=19$	$\mathrm{X}_{(5)}=8$
$x_{6}=4$	$\mathrm{X}_{(6)}=9$
$\mathrm{x}_{7}=6$	$\mathrm{x}_{(7)}=19$

$x_{1}=5$
$x_{2}=9$
$x_{3}=3$
$x_{4}=8$
$x_{5}=19$
$x_{6}=4$
$x_{7}=6$
$x_{8}=7$
$x_{(2)}=4$
$x_{(3)}=5$
$x_{(4)}=6$
$x_{(5)}=7$
$x_{(6)}=8$
$x_{(7)}=9$
$x_{(8)}=19$

$$
\begin{aligned}
& \tilde{x}=\frac{1}{2}\left[x_{\left(\frac{8}{2}\right)}+x_{\left(\frac{8}{2}+1\right)}\right] \\
& =\frac{1}{2}\left[x_{(4)}+x_{(5)}\right] \\
& =\frac{1}{2}[6+7]=6.5
\end{aligned}
$$

Median for interval sample

$$
M e=y_{i}+h_{i} \frac{\frac{n}{2}-\sum_{k=1}^{i-1} m_{k}}{m_{i}}
$$

Mean

- Mean
- Sample: $x_{1}, x_{2}, \ldots, x_{n}$
- Sample size: n
- Mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Comparison of median and mean

- Both samples have median 2500
- $\bar{x}=3000$ and $\overline{x^{\prime}}=5000$ are the mean values
- Mean can strongly be influenced by a single value
- Median is more robust against extreme values („outliers")
- Nevertheless, the mean is more often used in practice since it has other desirable properties.

i	x_{i}	x_{i}^{\prime}	ordered x_{i} and x_{i}^{\prime}
1	2000	2000	1500
2	5000	15000	2000
3	4000	4000	2500
4	1500	1500	4000
5	2500	2500	$5000 / 15000$

Mean vs. median

A mean μ and a median M for distributions of different shapes.
(a) symmetric

(b) right-skewed

(c) left-skewed

Center of gravity vs. half of the area

Amount of variation of the data

\rightarrow The mean (or median) is not sufficent to describe a sample

Measures of dispersion and spread

- Measures of dispersion and spread:
- Numbers to characterize the amount variation around the center (= mean)
- Most important:
- Minimum, maximum, range (dispersion)
- Empirical variance (spread)
- Empirical standard deviation (spread)

Range

sample

$$
\begin{gathered}
\text { minimum: } \min =x_{(1)} \\
\text { maximum: } \max =x_{(n)} \\
\text { range: } \quad R=x_{(n)}-x_{(1)}=16
\end{gathered}
$$

Variance and standard deviation

-A measure to express the spread around the center (mean) by a single value
-The squared deviation $\left(x_{i}-\bar{x}\right)^{2}$ of each attribute value x_{i} from the mean is considered.
-Formula for the empirical variance from a sample of n elements:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

-The empircal standard deviation s is just the square root of the variance,

$$
\mathrm{s}=\sqrt{s^{2}}
$$

Why divide by $n-1$ instead of n ?

Example:

$$
\begin{array}{ccc}
x_{1} & = & 75 \\
x_{2} & = & 2 \\
x_{3} & = & 270 \\
x_{4} & = & 4 \cdot 100-75-2-270=53 \\
n & = & 4 \\
\bar{x} & = & 100
\end{array}
$$

$x_{4}=53$ is not free,
but given by other values when the mean is known.
s^{2} has ($n-1$) degrees of freedom (f)
$s^{2}=\frac{1}{f} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

Standard errors of estimates

- For an estimator T for parameter θ, its standard error is $\operatorname{Std}(T)$, and it indicates the precision and reliability of T

Unbiased estimator
with a low standard error

Example: interval sample

- Calculate mean, variance, median for the sample:

$$
\begin{aligned}
& \text { Interval [-2; 0) [0; 4) [4; 6) [6; 10] } \\
& \begin{array}{l|l|l|l|l|}
\hline m_{i} & 5 & 10 & 20 & 15 \\
\hline
\end{array} \\
& \bar{x}=\frac{1}{n_{d}} \sum_{i=1}^{d} y_{i}^{*} m_{i}=\frac{1}{50}(-1 \cdot 5+2 \cdot 10+5 \cdot 20+8 \cdot 15)=4,7 . \\
& M_{2}=\frac{1}{n} \sum_{i=1}^{d}\left(y_{i}^{*}\right)^{2} m_{i}=\frac{1}{50}\left((-1)^{2} \cdot 5+2^{2} \cdot 10+5^{2} \cdot 20+8^{2} \cdot 15\right)=30,1 \text {. } \\
& S^{2}=M_{2}-(\bar{X})^{2}=30,1-(4,7)^{2}=8,01 . \\
& \hat{S}^{2}=\frac{n}{n-1} S^{2}=\frac{50}{49} \cdot 8,01 \approx 8,17 . \\
& M e=4+2 \cdot \frac{25-15}{20}=5 \text {. }
\end{aligned}
$$

Example: Discrete case - 1

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

y_{i}	0	1	2	3	4	5	7
m_{i}	8	17	16	10	6	2	1

$$
\bar{x}=\frac{1}{8+17+16+10+6+2+1} \cdot(0 \cdot 8+1 \cdot 17+2 \cdot 16+3 \cdot 10+4 \cdot 6+5 \cdot 2+7 \cdot 1)=\frac{1}{60} \cdot 120=2
$$

$$
\begin{gathered}
M_{2}=\frac{1}{60} \cdot\left(0^{2} \cdot 8+1^{2} \cdot 17+2^{2} \cdot 16+3^{2} \cdot 10+4^{2} \cdot 6+5^{2} \cdot 2+7^{2} \cdot 1\right)=\frac{1}{60} \cdot 366=6.1 \\
S^{2}=M_{2}-\bar{X}^{2}=6.1-2^{2}=2.1 \\
\hat{S}^{2}=\frac{n}{n-1} S^{2}=\frac{60}{59} \cdot 2.1=2.14
\end{gathered}
$$

Example: Discrete case - 2

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

y_{i}	0	1	2	3	4	5	7
m_{i}	8	17	16	10	6	2	1

Histogram

Example: Discrete case - 3

Calculate mean, variance, median, histogram, empirical distribution function for the sample:

y_{i}	0	1	2	3	4	5	7
m_{i}	8	17	16	10	6	2	1

Empirical disribution function

REVIEW

KSE:

Population and sample

Population parameters and sample statistics.

Descriptive statistics

- Most important:
- Mean
- Median
- Variance
- Standard Deviation
- Range
- Minimum
- Maximum

Thank you for attention!

