# Conditional probabilities 

Ass. Prof. Andriy Stavytskyy

## Outline

1. Conditional probability
2. Bayes' Theorem

## Conditional probability - 1

General definition: under assumption that $\mathrm{P}(\mathrm{B})>0$ (event B has to be possible)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Conditional probability - 2

- Useful expressions:

$$
\begin{gathered}
P(A)=P(A \mid \Omega) \quad \text { for any event } \mathrm{A} \\
A \cap B=\varnothing \Rightarrow P(A \mid B)=0 \\
A \subset B \Rightarrow P(A \mid B)=\frac{P(A)}{P(B)} \\
B \subset A \Rightarrow P(A \mid B)=1
\end{gathered}
$$

## Example - 1

If we randomly choose a family with two children and find out that at least one child is a boy, find the probability that both children are boys.

$$
\Omega=\{\text { boy boy, boy girl, girl boy, girl girl }\}
$$

- $A=$ event that both children are boys
- $B=$ event that at least one is a boy


## Example-2

- $A$ = event that both children are boys
- $B=$ event that at least one is a boy

$$
\begin{aligned}
& \Omega=\{\text { boy boy, boy girl, girl boy, girl girl }\} \\
& P(B)=\frac{3}{4} \text { and } P(A \cap B)=\frac{1}{4} \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
\end{aligned}
$$

## Example

- We are throwing a 6 -sided die three times. Each time we have got a different number of dots. Calculate a probability that only once we get a „5" assuming that each attempt gives different number.

$$
\begin{gathered}
P(B)=\frac{6 \cdot 5 \cdot 4}{6 \cdot 6 \cdot 6}=\frac{120}{216} \\
P(A \cap B)=\frac{6 \cdot 5 \cdot 4-5 \cdot 4 \cdot 3}{6 \cdot 6 \cdot 6}=\frac{60}{216} \\
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{60}{120}=\frac{1}{2}
\end{gathered}
$$

## Multiplication Rule

Definition. The probability that events $A$ and $B$ both occur is one trial of a random experiment is

$$
P(A \cap B)=P(A) P(B \mid A)
$$

## Example - 1

Randomly choose two different students. Find the probability they both completed the problems
$A=$ event first student completed the problems
$B=$ event second student completed the problems

Grade

|  | A or B | C or below | Totals |
| ---: | :---: | :---: | :---: |
| Completed | 34 | 8 | 42 |
| Did Not Complete | 12 | 26 | 38 |
| Totals | 46 | 34 | 80 |

## Example-2

$$
\begin{gathered}
P(A)=\frac{42}{80}=\frac{21}{40} \quad P(B \mid A)=\frac{41}{79} \\
P(A \cap B)=P(A) P(B \mid A)=\frac{21}{40} \cdot \frac{41}{79} \approx 0.272
\end{gathered}
$$

Grade

|  | A or B | C or below | Totals |
| ---: | :---: | :---: | :---: |
| Completed | 34 | 8 | 42 |
| Did Not Complete | 12 | 26 | 38 |
| Totals | 46 | 34 | 80 |

## Example

- A batch of 5 computers has 2 faulty computers. If the computers are chosen at random (without replacement), what is the probability that the first two inspected are both faulty?

$$
\text { Use } P(A \cap B)=P(A) P(B \mid A)
$$

## $P$ (first computer faulty AND second computer faulty)



$$
=\frac{2}{5} \times \frac{1}{4}=\frac{2}{20}=\frac{1}{10}
$$

## Card example

- Drawing two random cards from a pack without replacement, what is the probability of getting two hearts? [13 of the 52 cards in a pack are hearts]

Answer:

$$
\frac{13 \cdot 12}{52 \cdot 51} \approx 0.059
$$

## Example - 1

TV screens produced by a manufacturer have defects $10 \%$ of the time. An automated mid-production test is found to be $80 \%$ reliable at detecting faults (if the TV has a fault, the test indicates this $80 \%$ of the time, if the TV is fault-free there is a false positive only $20 \%$ of the time). If a TV fails the test, what is the probability that it has a defect?

1. What is the probability that a random TV fails the test?
2. Given that a random TV has failed the test, what is the probability it is because it has a defect?

## Example - 2

- Let $D=$ "TV has a defect"
- Let $\mathrm{F}=$ "TV fails test"
- The question tells us: $P(D)=0.1, P(F \mid D)=0.8$
- Two independent ways to fail the test:

TV has a defect and test shows this, -OR- TV is OK but get a false positive

$$
\begin{gathered}
P\left(F \mid D^{c}\right)=0.2 \\
P(F)=P(F \cap D)+P\left(F \cap D^{c}\right) \\
=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right) \\
=0.8 \times 0.1+0.2 \times(1-0.1)=0.26
\end{gathered}
$$

## Total Probability Rule

$$
P(F)=P(F \cap D)+P\left(F \cap D^{c}\right)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right)
$$

- If $A_{1}, A_{2} \ldots, A_{k}$ form a partition (a mutually exclusive list of all possible outcomes) and B is any event then
- $P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)=$ $\sum_{k} P\left(B \mid A_{k}\right) P\left(A_{k}\right)$


$$
P\left(A_{1} \cap B\right)=P\left(B \mid A_{1}\right) P\left(A_{1}\right) \quad P\left(A_{2} \cap B\right)=P\left(B \mid A_{2}\right) P\left(A_{2}\right) \quad P\left(A_{3} \cap B\right)=P\left(B \mid A_{3}\right) P\left(A_{3}\right)
$$

## TV defects

- Let $D=$ "TV has a defect"
- Let F="TV fails test"
- We previously showed using the total probability rule that
- $P(F)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right)=0.8 \times 0.1+0.2 \times$
$(1-0.1)=0.26$
- When we get a test fail, what fraction of the time is it because the TV has a defect?


## Solution


$F$ : TVs that fail the test

## Answer

- Let $D=$ "TV has a defect"
- Let F="TV fails test"

We previously showed using the total probability rule that

$$
\begin{aligned}
& P(F)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right) \\
& =0.8 \times 0.1+0.2 \times(1-0.1)=0.26
\end{aligned}
$$

- When we get a test fail, what fraction of the time is it because the TV has a defect?

$$
P(D \mid F)=\frac{P(D \cap F)}{P(F)}
$$

- Know $P(F \mid D)=0.8, P(D)=0.1$ :

$$
P(D \mid F)=\frac{P(F \mid D) P(D)}{P(F)}=\frac{0.8 \times 0.1}{0.26} \approx 0.3077
$$

## Conditional Probability Example

- A study was carried out to investigate the link between people's lifestyles and cancer. One of the areas looked at was the link between lung cancer and smoking. 10,000 people over the age of 55 were studied over a 10 year period. In that time 277 developed lung cancer.

|  | Cancer | No Cancer | Total |
| :---: | :---: | :---: | :---: |
| Smoker | 241 | 3,325 | 3,566 |
| Non- | 36 | 6,398 |  |
| Smoker |  |  | 6,434 |
| Total | 277 | 9,723 | 10,000 |

What is the likelihood of somebody developing lung cancer given that they smoke?

## Conditional Probability Example

Event A: A person develops lung cancer
Event B : A person is a smoker

$$
P(A)=277 / 10,000=0.027 \quad P(B)=3,566 / 10,000=0.356
$$

$$
\begin{aligned}
& P(A \cap B)=241 / 10,000=0.0241 \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.0241}{0.3566}=0.068
\end{aligned}
$$

|  | Cancer | No Cancer | Total |
| :---: | :---: | :---: | :---: |
| Smoker | 241 | 3,325 | 3,566 |
| Non- | 36 | 6,398 |  |
| Smoker |  |  | 6,434 |
| Total | 277 | 9,723 | 10,000 |

## Bayes' Theorem

Definition. Let $\Omega$ be the sample space of a random experiment and let $A_{1}$ and $A_{2}$ be two events such that

$$
A_{1} \cup A_{2}=\Omega \quad \text { and } \quad A_{1} \cap A_{2}=\varnothing
$$

The collection of sets $\left\{A_{1}, A_{2}\right\}$ is called a partition of $\Omega$.
Theorem. If $A_{1}$ and $A_{2}$ form a partition of $\Omega$, and $B \subset \Omega$ is any event, then for $i=1$, 2

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)}
$$

## Example

- Medical tests for the presence of drugs are not perfect. They often give false positives where the test indicates the presence of the drug in a person who has not used the drug, and false negatives where the test does not indicate the presence of the drug in a person who has actually used the drug.
- Suppose a certain marijuana drug test gives $13.5 \%$ false positives and $2.5 \%$ false negatives and that in the general population $0.5 \%$ of people actually use marijuana. If a randomly selected person from the population tests positive, find the conditional probability that the person actually used marijuana.


## Example-2

Define the events

$$
\begin{aligned}
& U=\text { used marijuana, } N U=\text { not used marijuana, } \\
& T^{+}=\text {tested positive, and } T^{-}=\text {tested negative }
\end{aligned}
$$

Note that $\{U, N U\}$ forms a partition.

$$
\begin{aligned}
& P\left(T^{+} \mid N U\right)=0.135, \quad P\left(T^{-} \mid N U\right)=0.865, \\
& P\left(T^{-} \mid U\right)=0.025, \quad P\left(T^{+} \mid U\right)=0.975
\end{aligned}
$$

## Example - 3

$$
\begin{aligned}
P\left(U \mid T^{+}\right) & =\frac{P(U) P\left(T^{+} \mid U\right)}{P(U) P\left(T^{+} \mid U\right)+P(N U) P\left(T^{+} \mid N U\right)} \\
& =\frac{(0.005)(0.975)}{(0.005)(0.975)+(0.995)(0.135)} \\
& \approx 0.035
\end{aligned}
$$

## Example-4

- "Tree diagram"


$$
P\left(U \mid T^{+}\right)=\frac{(0.005)(0.975)}{(0.005)(0.975)+(0.995)(0.135)}
$$

## Example: Evidence in court

- The cars in a city are $90 \%$ black and $10 \%$ grey. A witness to a bank robbery briefly sees the escape car, and says it is grey. Testing the witness under similar conditions shows the witness correctly identifies the colour $80 \%$ of the time (in either direction). What is the probability that the escape car was actually grey?

Answer: Let $\mathrm{G}=$ car is grey, $\mathrm{B}=\mathrm{car}$ is black, $\mathrm{W}=$ Witness says car is grey. Bayes' Theorem

$$
P(G \mid W)=\frac{P(W \cap G)}{P(W)}=\frac{P(W \mid G) P(G)}{P(W)} .
$$

Use total probability rule to write

$$
P(W)=P(W \mid G) P(G)+P(W \mid B) P(B)=0.8 \times 0.1+0.2 \times 0.9=0.26
$$

Hence:

$$
P(G \mid W)=\frac{P(W \mid G) P(G)}{P(W)}=\frac{0.8 \times 0.1}{0.26} \approx 0.31
$$

## Failing a drugs test

A drugs test for athletes is 99\% reliable: applied to a drug taker it gives a positive result 99\% of the time, given to a non-taker it gives a negative result $99 \%$ of the time. It is estimated that $1 \%$ of athletes take drugs.

1. What fraction of randomly tested athletes fail the test?

- Let F="fails test"
- Let D="takes drugs"

Question tells us

$$
P(D)=0.01, P(F \mid D)=0.99, P\left(F \mid D^{c}\right)=0.01
$$

From total probability rule:

$$
\begin{gathered}
P(F)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right)=0.99 \times 0.01+0.01 \times \\
0.99=0.0198
\end{gathered}
$$

i.e. $1.98 \%$ of randomly tested athletes fail

## Failing a drugs test

A drugs test for athletes is $99 \%$ reliable: applied to a drug taker it gives a positive result $99 \%$ of the time, given to a non-taker it gives a negative result $99 \%$ of the time. It is estimated that $1 \%$ of athletes take drugs.
2. A random athlete has failed the test. What is the probability the athlete takes drugs?

Let $F=$ "fails test"
Let D="takes drugs"
Question tells us

$$
P(D)=0.01, P(F \mid D)=0.99, P\left(F \mid D^{c}\right)=0.01
$$

Bayes' Theorem gives

$$
P(D \mid F)=\frac{P(F \mid D) P(D)}{P(F)}
$$

We need $P(F)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right)=0.99 \times 0.01+0.01 \times 0.99=$ 0.0198

Hence: $P(D \mid F)=\frac{P(F \mid D) P(D)}{P(F)}=\frac{0.99 \times 0.01}{0.0198}=\frac{0.0099}{0.0198}=\frac{1}{2}$

## Review

## Conditional probability

General definition: under assumption that $\mathrm{P}(\mathrm{B})>0$ (event B has to be possible)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Total Probability Rule

$$
P(F)=P(F \cap D)+P\left(F \cap D^{c}\right)=P(F \mid D) P(D)+P\left(F \mid D^{c}\right) P\left(D^{c}\right)
$$

- If $A_{1}, A_{2} \ldots, A_{k}$ form a partition (a mutually exclusive list of all possible outcomes) and B is any event then
- $P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)=$ $\sum_{k} P\left(B \mid A_{k}\right) P\left(A_{k}\right)$

$P\left(A_{1} \cap B\right)=P\left(B \mid A_{1}\right) P\left(A_{1}\right) \quad P\left(A_{2} \cap B\right)=P\left(B \mid A_{2}\right) P\left(A_{2}\right) \quad P\left(A_{3} \cap B\right)=P\left(B \mid A_{3}\right) P\left(A_{3}\right)$


## Bayes' Theorem

Definition. Let $\Omega$ be the sample space of a random experiment and let $A_{1}$ and $A_{2}$ be two events such that

$$
A_{1} \cup A_{2}=\Omega \quad \text { and } \quad A_{1} \cap A_{2}=\varnothing
$$

The collection of sets $\left\{A_{1}, A_{2}\right\}$ is called a partition of $\Omega$.
Theorem. If $A_{1}$ and $A_{2}$ form a partition of $\Omega$, and $B \subset \Omega$ is any event, then for $i=1$, 2

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)}
$$

## Thank you for attention!

