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Agenda

Difference between censored and truncated data

Truncated regression
Tobit-model
Heckman Selection Model






Censored Data:
Definitions

Y Is censored when we observe X for all observations, but we
only know the true value of Y for a restricted range of
observations. Values of Y In a certain range are reported as a
single value or there is significant clustering around a value,
say 0.
o If Y=k or Y>k for all Y =>Y is censored from below or left-
censored.

o IfY=korY<k forall Y =>Y is censored from above or right-
censored.

We usually think of an uncensored Y, Y*, the true value of Y
when the censoring mechanism is not applied. We typically
have all the observations for {Y,X}, but not {Y*,X}.
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Truncated Data

Y is truncated when we only observe X for observations
where Y would not be censored. We do not have a full
sample for {,X}, we exclude observations based on
characteristics of .



Censored from below:
Example - 1

A Central Bank intervenes if the exchange rate hits the
band’s lower limit.

If S,<E=>S=E.

If Y <5, we do not know Its exact value.



‘Censored from below:
Example - 2
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‘Censored from below:
Example -3

The pdf of the observable variable, y, is a mixture of discrete
(prob. mass at Y=5) and continuous (Prob[Y*>5])
distributions.

PDE(y)

B

Prob(y*<5)

Prob(y*>5)
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‘Censored from below:
Example - 4

Under censoring we assign the full probability in the
censored region to the censoring point, 5.

PDE(y"

L Prob(y* 552- Prob(y*>5)
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New example

Consumer maximizes utility by purchasing durable goods
under constraint that total expenditures do not exceed
Income

expenditure of durables > cost of least expensive durable
good

If available income is less than least expensive durable
good then no expenditure 1s observed. Don’t know how
much a household would have spent if a durable good
could be purchased for less than the least expensive item.
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One more

Model how much an individual spends on alcohol in a
given month.

A significant fraction have zero expenditure.



/

Truncated Data: Example
-1

If a family’s income 1s below certain level, we have no
information about the family’s characteristics.

If Y < 3, the value of X (or Y) is unknown.
(Truncation from below.)
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“Truncated Data: Example
-2

Truncated
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Truncated Data: Exam/pI;
-3

Under data censoring, the censored distribution is a
combination of a pmf plus a pdf. They add up to 1. We
have a different situation under truncation. To create a pdf
for Y we will use a conditional pdf.



“Truncated Data: Example
-4
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Truncated regression

Truncated regression is different from censored regression
In the following way:
e Censored regressions: The dependent variable may be

censored, but you can include the censored observations in
the regression

e Truncated regressions: A subset of observations are dropped,
thus, only the truncated data are available for the regression.



Why do we have
truncation?

Truncation by survey design:

e Studies of poverty. By survey’s design, families whose
Incomes are greater than that threshold are dropped from the
sample.

Incidental Truncation:

e \Wage offer married women. Only those who are working
has wage information. It 1s the people’s decision, not the
survey’s design, that determines the sample selection.
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Example

Hausman and Wise’s analyse the New Jersey negative
Income tax experiment

Goal: Estimate earnings function for low income
Individuals

Truncation: Individuals with earnings greater than
1.5xpoverty level were excluded from the sample.

Two types of inference:
e Inference about entire population in presence of truncation

e Inference about sub-population observed



What happens when we
apply OLS to a truncated
data?

Suppose that you consider the following regression:
Yi=Bo+ By X + &,

We have a random sample of size N.

All assumptions are satisfied. (The most Important

assumption is E(g|x;)=0.)

Instead of using all the N observations, we use a

subsample.

Then, run OLS using this sub-sample (truncated sample)
only.



Under what conditions,
does sample selection
matter to OLS?

OLS is Unbiased
Sample selection is randomly done.

Sample selection is determined solely by the value of x-
variable. For example, suppose that x is age. Then if you
select sample if age is greater than 20 years old, this OLS
IS unbiased.



Ve

Truncation and OLS - 1

OLS is Biased
Sample selection is determined by the value of y-variable.

e Example: Y is family income. We select the sample if y is greater
than certain threshold. Then this OLS is biased.

Sample selection is correlated with ;.

o Example: We run a wage regression w; =+, educ;+ &;, where ¢;
contains unobserved ability. If sample is selected based on the
unobserved ability, this OLS is biased.

e |n practice, this situation happens when the selection is based on
the survey participant’s decision. Since the decision to participate
IS likely to be based on unobserved factors which are contained in
g, the selection is likely to be correlated with &;.
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Truncation and OLS -2

Consider the previous regression:
yi=Bo * By X + &,
All CLM assumptions are satisfied.

Instead of using all the N observations, we use a subsample. Let s; be
a selection indicator: If s;=1, then person i is included in the
regression. If s;=0, then person i is dropped from the data.

If we run OLS using the selected subsample, we use only the
observation with s;=1. That is, we run the following regression:

Si¥i= BoSi + P1SiX; t+ Sig;
Now, s;X; IS the explanatory variable, and u;=s;g; is the error term.
OLS is unbiased if E(u;=s;g;|s;X;) = 0.
We need check under what conditions the new condition is satisfied.
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Truncation and OLS -3

It is sufficient to check: E(ui[s;x;)=0. (If this Is zero, then
new condition Is also zero.)

E(ui|x;,s:) = S;iE(&)|%,S;) - S; IS In the conditional set.

It is sufficient to check the condition which ensures
E(ui[x;, s;)=0.
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Cases - 1

Sample selection is done randomly

e s is independent of € and x. => E(g[x,s)=E(g[x). Since the
assumptions are satisfied => we have E(g|x)=0. => OLS Is
unbiased
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Cases -2

Sample is selected based solely on the value of x-variable.

e Example: We study trading in stocks, y;. One of the dependent
variables, x;, is wealth, and we select person i, if wealth is greater
than 50K. Then,

s;.=1 if x; >50K,
$;=0 If x;.
e Now, s; IS a deterministic function of x; .

Since s Is a deterministic function of x, it drops out from the
conditioning set. Then,

E(elx, s) = E(g|x, s(X)) = E(g|x) =0
e CLM assumptions satisfied.
OLS is unbiased.
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Cases -3

Sample selection is based on the value of y-variable

e Example: We study determinants of wealth, Y. We select
Individuals whose wealth is smaller than 150K. Then, s;=1 if
y; <150K.

e Now, s; depends on y; (and ; ). It cannot be dropped out
from the conditioning set like we did before. Then, E(glx,
s)#E(g|x) = 0.

e OLS is biased.



Cases -4

Sample selection is correlated with u;.

e The inclusion of a person in the sample depends on the person’s
decision, not the surveyor's decision. This type of truncation is
called the incidental truncation. The bias that arises from this type
of sample selection is called the Sample Selection Bias.

o Example: wage offer regression of married women:
wage; = By + B, edu; + &;.
e Since it Is the woman’s decision to participate, this sample
selection iIs likely to be based on some unobservable factors

which are contained in g. s cannot be dropped out from the
conditioning set:

e E(glx,s) ZE(elx) =0
e OLS is biased.



Cases -5

The selection rule based on the x-variable may be
correlated with g;.

e Example: X is 1Q. A survey participant responds if 1Q > v.
Now, the sample selection is based on x-variable and a
random error V.

e TWO cases:

If v is independent of €, then it does not cause a bias.
If v is correlated with g, then this OLS will be biased.



Estimation with
Truncated Data

Under cases (1), (2), (5) OLS is appropriate.
Under case (3), we use Truncated regression.

Under case (4) —l.e., incidental truncation-, we use the
Heckman Sample Selection Correction method. This iIs
also called the Heckit model.
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Truncated Regression - 1

The truncation is based on the y-variable

We have the following regression satisfies all CLM
assumptions:

Yi=%’B + &, &~N(0, 0°)
We sample only if y;< c;
Observations dropped if y, > c¢. by design.
We know the exact value of c; for each person.

We know that OLS on the truncated data will cause biases.
The model that produces unbiased estimate iIs based on the
ML Estimation.
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Truncated Regression — 2

Truncated Regression

These
Wealth - observations
are dropped
from the data.
150K

' rue regression

\ Education

Biased regression when
applying OLS to truncated data



Truncated Normal:
Moments

Let y*~ N(u*, 62 ) and o = (¢ — p*)/o.
First moment: E[y*|y> c] = u* + 6 A(a)) <= This is the
truncated regression.

e If u*>0 and the truncation is from below, i.e., A(a) >0, the mean
of the truncated variable is greater than the original mean

e Note: For the standard normal distribution A(a) 1s the mean of the
truncated distribution.
Second moment:
o Var[y*|y> c] = 6?[1 - d(a)], where d(a) = Ma) [Ma)- o]
e Truncation reduces variance! This result is general, it applies to
upper or lower truncation given that 0 < d(a) < 1



/

i L5

Truncated Normal - 1

Model: y* = X8 + ¢;
Data: y =y* |y*>0

f(y|y™>0,X)
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Truncated Normal - 2

Truncated (from below —l1.e., y*>0) regression model:
E(yil yi* > 0,X;) = X + o> E(yi[X;)



Truncated Regression: ML
Estimation

The likelihood contribution for it observation is given by

The likelthood function is given by

InL(S,0) ZInL — max

The values of (B, o) that maximizes LnL are the ML
estimators of the Truncated Regression.
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The partial effects

The estimated 3, shows the effect of x,; on y;. Thus,

OE(y, |é;<(i,yi >O)=ﬂk+8E(i;>|(yi >o):
k,i K,i
= b +O_5§(ﬂ;,i = "“7(42 _O‘iﬂﬁ)(_%j:

:ﬁk(l_ﬂ’lz _aiﬂ’l):ﬂk(l_é‘i)’
where &, = A(a;)(A(a )+ ¢ ),0< 6, <1.



Tobit-model
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Example - 1

A popularly used model in these situations is the Tobit
model, which was originally developed by James Tobin, a
Nobel laureate economist.

For this purpose we use the data collected by Mroz. His

sample gives data on 753 married women, 428 of whom
worked outside the home and 325 of whom did not work
outside the home, and hence had zero hours of work.
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- OLS estimation of the
hours worked function

Dependent Variable: HOURS
Method: Least Squares

Sample: 1 753
Included observations: 753
Coellicient 5td. Error L-5latistic Prob.

C 1298.293 231.9451 5.597413 (0.0000
AGE —29.55452 3.864413 -7.647869 (0.0000
EDUC 5.064135 12.55700 0.403292 0.6868
EXPER 68.52186 9.398942 7.290380 (0.0000
EXPERS() —0.779211 0.308540 —2.5254 80 0.0118
FAMINC 0.028993 0.003201 2.056627 0.0000
KIDSLT6G —395.5547 55.63591 -7.109701 (0.0000
HUSWAGE —70.51493 9024624 -7.813615 (0.0000

R-squared 0.338537 Mean dependent var  740.5764

Adjusted R-squared  0.332322 5.D. dependent var B71.3142

5.E. of regression 711.9647 Akaike info criterion 15.98450

Sum squared resid 3.78E+08 Schwarz criterion 16.03363

Log likelihood -6010.165 Hannan—Quinn criter.  16.00343

F-statistic 5447011 Durbin—YWatson stat 1.482101

Prob{ F-statistic) 0. 00
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Analysis of OLS

The results in this table are to be interpreted in the
framework of the standard linear regression model.

For example, 1f husband’s wages go up by a dollar, the
average hours worked by married women declines by
about 71 hours, ceteris paribus.

Except for education, all the other coefficients seem to be
highly statistically significant.

But beware of these results, for in our sample 325 married
women had zero hours of work.



OLS estimation of hours
~ function for working
women only

Dependent Variable: HOURS
Method: Least Squares
Sample: 1 428

Included abservations: 428

Coelficient Std. Error L-Statistic Prob.

C 1817.334 296.4489 6.130345 0.0000
AGE —16.45594 5.365311 —3.067100 0.0023
EDUC —38.36287 16.06725 ~2.387644 0.0174
EXPER 4948693 13.73426 3.603174 0.000:4
EXPERSQ) —0.551013 0.416918 —-1.321634 0.1870
FAMINC 0.027386 0.003995 6.855281 (.00
KIDSLT6 —243.8313 92.15717 - 2645821 0.0085
HUSWAGE —66.50515 12.84196 -5.178739 0.0000

R-squared 0.218815 Mean dependent var 1302.930

Adjusted R-squared  0.205795 5.D. dependent var 776.2744

S.E. of regression 691.8015 Akaike info eriterion  15.93499

Sum squared resid 201E+08 Schwarz criterion 16.01086

Log likelihood —3402.088 Hannan—Cuinn criter. 1596495

F-statistic 16.80640 Durbin—Watson stat ~ 2.107803

Prob{F-statistic) 0000000
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Analysis

The education variable now seems to be highly
significant, although It has a negative sign.

This 1s because OLS estimates of censored regression
models, whether we include the whole sample or a subset
of the sample, are biased as well as inconsistent — that Is,
no matter how large the sample size Is, the estimated
parameters will not converge to their true values.



HOURS

5,000

4,000 4

3,000

2,000

gl

raphical analysis

Hours vs. family income
for working women

Hours worked and family

iIncome, full sample

1,000 { 2 °

FAMINC

HOURS

5,000 -

4,000

3,000 -

2,000 S

1,000 -

T T T T 1
20,000 40,000 60,000 80,000 100,000

FAMINC

In the left figure there are several observations (actually 325) that lie on the horizontal axis
because for these observations the hours worked are zero. In the right figure none of the
observations lie on the horizontal axis, for these observations are for 428 working women. The
slope coefficients of the regression lines in the two figures will obviously be different.
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The Tobit model

The Y;* are desired hours of work. Now

DitY =0
Y. ifY =0

The variable Y;* is called a latent variable, the variable of
primary interest.



ML estimation of the
- censored regressmn
model

Dependent Variable: HOURS

Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing)
Sample: 1 753

Included observations: 753

Left censoring (value) at zero

Convergence achieved after 6 iterations

Covariance matrix computed using second derivatives

Coefficient Std. Error Z-Statistic Prob.

C 1126.335 379.5852 2967279 0.0030
AGE -54. 10976 6621301 —8.172074 0.0000
EDLUC 38.64634 M.68458 1.868365 0.0617
EXPER 129 8273 1622972 7.999354 0.0000
EXPERS() —1.844762 0.509684 —3.619422 0.0003
FAMINC 0.040769 0.005258 7.754009 0.0000
KIDSLTa —782.3734 103.7509 —7.540886 0.0000
HUSWAGE —105.5097 1562926 —6.750783 0.0000

Error Distribution

SCALE:C(9) 1057 598 3906065 27.07570 0.0000

Mean dependent var  740.5764 5.D. dependent var 871.3142

5.E. of regression T07.2850 Akaike info eriterion 10.08993

Sum squared resid 3.72E+08 Schware criterion 10.14520

Log likelihood —3780.858

Avg. log likelihood — -5.033012

Left censored obs 325 Right censored obs 0

Uncensored obs 428 Total obs 753



Interpretation of the Tobit
estimates

For example, 1f the husband’s wages go up, on average, a
woman will work less in the labor market, ceteris paribus.

The education variable is not significant in OLS, but it is
In censored OLS, although it has a negative sign. Now it Is
significant and has a positive sign, which makes sense.
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But...

We cannot interpret the Tobit coefficient of a regressor as
giving the marginal impact of that regressor on the mean

va
To
va

ue of the observed regressand. This is because in the
DIt type censored regression models a unit change in the

ue of a regressor has two effects:
the effect on the mean value of the observed regressand,

e the effect on the probability that Y; * is actually observed.



Age impact

Take for instance the impact of age. The coefficient for age of about —54, it means
that, holding other variables constant, if age increases by a year, its direct impact on
the hours worked per year will be a decrease by about 54 hours per year and the
probability of a married woman entering the labor force will also decrease.

So we have to multiply —54 by the probability that this will happen. Unless we know
the latter, we will not able to compute the aggregate impact of an increase in age on
the hours worked. And this probability calculation depends on all the regressors in
the model and their coefficients.

Interestingly, the slope coefficient gives directly the marginal impact of a regressor
on the latent variable Y;*. Thus, the coefficient of the age variable of —-54 means if
age increases by a year, the desired hours of work will decrease by 54 hours, ceteris
paribus. Of course, we do not actually observe the desired hours of work, for it is an
abstract construct.

In our example we have 753 observations. It Is a laborious task to compute the
marginal impact of each regressor for all the 753 observations. In practice, one can
compute the marginal impact at the average value of each regressor.



Non-normality of error
term

In the censored regression models under non-normality of

the error term the estimators are not consistent.

Again, some remedial methods are suggested in the

literature. One is to change the error distribution
assumption. For example, Eviews can estimate suc
regression models under different probability distri
assumptions for the error term (such as logistic anc
extreme value).

N
pution
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Heteroscedasticity

In the usual linear regression model, if the error term is
heteroscedastic, the OLS estimators are consistent, though
not efficient. In Tobit-type models, however, the
estimators are neither consistent nor efficient.



- Robust estimation of the
Tobit model

Dependent Variable: HOURS

Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing
Sample: 1 753

Included observations: 753

Left censoring (value) at zero

Convergence achieved after 6 iterations

OML (Huber/White) standard errors & covariance

Coefficient 5td. Error z-Statistic Prob.

C 1126.335 3863109 2915618 0.0035
AGE —54.10976 6.535741 —8.279056 (0.0
EDUC 3864634 20.30712 1.903004 0.0570
EXPER 1298273 1727868 7513728 (00000
EXPERS() —1.844762 0.536345 -3.439505 0.0006
FAMINC 0.040769 0.005608 7.269932 (0.0
KIDSLThH —782.3734 1046233 7478004 (0.0
HUSWAGE —105.5097 1633276 — . 460007 (.00

Error Distribution

SCALE:AC(9) 1057.598 42 80938 24 70482 0.0000

Mean dependent var  740.5764 S5.D. dependent var 871.3142

5.E. of regression T07.2850 Akaike info criterdon 10.08993

Sum squared resid 3.72E+08 Schwarz criterion 10.14520

Log likelihood —3789.858 Avg. log likelihood -5.033012

Left censored obs 325 Right censored obs 0

Uncensored obs 428 Total obs 753




Truncated sample
regression models

In our illustrative example, we do not have data on hours
worked for 325 women. Therefore we may not consider
Information about socio-economic variables for these

observations, even though we have that information on
them In the current example.

However, the OLS estimators are inconsistent in this
situation.



“Truncated normal

distribution

Dependent Variable: HOURS
Method: ML — Censored Normal (TOBIT) (Quadratic hill climbing)
Sample (adjusted): 1 428
Included observations: 428 after adjustments

Truncated sample

Left censoring (value) at zero

Convergence achieved after 6 iterations

OML (Huber "White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

i 1864.232 3972480 4 692867 WELE LT
AGE 2288776 7.616243 —3.005125 .27
EDUC =50.79302 20.77250 —2.445205 00145
EXPER 73.69759 2243240 3.286784 0.0010
EXPERS() —[.954847 0.575639 —1.658761 0.0972
FAMINC 0.036200 0.006947 5.210857 (0.0
KIDSLTé —391.7641 193.4270 — 2025385 0.0428
HUSWAGE -03.52777 19. 11320 —4. 893360 WL

Error Distribution

SCALE:C(9) 794.6310 56.36703 14.09744

0.0000

Mean dependent var  1302.930 5.0 dependent var TT02744

5.E. of regression 6964534 Akaike info criterion 1578988

Sum squared resid 203E+08 Schwarz criterion 1587524

Log likelihood —3370.035 Avg log likelihood -7.873913

Left censored obs 0 Right censored obs 0

Uncensored obs 428 Total obs 428

* If we compare the results of

the censored regression
with the truncated
regression here, we will see
differences in the
magnitude and statistical
significance of the
coefficients.

Notice particularly that the
education coefficient is
positive in the censored
regression model, but is
negative in the truncated
regression model.



Interpretation of the @
truncated regression
coefficients

As in the Tobit model, an individual regression coefficient
measures the marginal effect of that variable on the mean
value of the regressand for all observations — that is,
Including the non-included observations.

But if we consider only the observations in the (truncated)
sample, then the relevant (partial) regression coefficient
has to be multiplied by a factor which is smaller than 1.
Hence, the within-sample marginal effect of a regressor is
smaller (in absolute value) than the value of the
coefficient of that variable, as in the case of the Tobit
model.




Tobit vs truncated

regression model

Which is preferable?

Since the Tobit model uses more information (753
observations) than the truncated regression model (428

observations), estimates obtained from Tobit are expected
to be more efficient.






Heckman Selection Model

The Heckman (1976) selection model, sometimes called the
Heckit model, is a method for estimating regression models
which suffer from sample selection bias.

Under the Heckman selection framework, the dependent
variable is only observable for a portion of the data.

A classic example, in economics, of the sample selection
problem 1s the wage equation for women, whereby a woman’s
wage Is only observed if she makes the decision to enter the
work place, and is unobservable if she does not.

Heckman’s (1976) paper that introduced the Heckman
Selection model worked on this very problem.



The model

The wage equation
W, =BX;+ ¢
where W, is the wage, X; observed variables relating to the i-th

person’s productivity and g; is an error term. W is observed only for
workers, 1.e. only people in work receive a wage.

Sample selection (i.e. being in the labour force so W is observed).
There is a second equation relating to employment:

E* =Zjy.,
E* = W, — E'; Is the difference between the wage and the reservation
wage E'.. The reservation wage is the minimum wage at which the i-th
Individual is prepared to work. If the wage Is below that they choose

not to work. We observe only an indicator variable for employment
defined as E=1 if E*>0 and E=0 otherwise.
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Assumptions

(e,u) ~ N(0,0,6%,, 6°,,0,,)

That is both error terms are normally distributed with mean
0, variances as indicated and the error terms are correlated
where p_,, Indicates the correlation coefficient.

(g,u) Is independent of X and Z.

The error terms are independent of both sets of explanatory
variables.

Var(u)=0%,=1
This Is not so much an assumption as a simplification it

normalises the variance of the error term in what will be a
probit regression.



The sample selection
problem - 1

The key problem is that in regressing wages on
characteristics for those in employment we are not
observing the equation for the population as a whole.

Those in employment will tend to have higher wages than
those not in the labour force would have (that is why they
are not in the labour force).

Hence the results will tend to be biased (sample selection
bias) and e.g. we are likely to get biased results when
estimating say the returns to education.



The sample selection
problem - 2

For example two groups of people (i) industrious; (ii) lazy.
Industrious people get higher wages and have jobs, lazy
people do not. In effect we are doing the regression in this
simplified example on the industrious part of the labour force.
The returns to education will be estimated on them alone not
the whole of the population (which includes the lazy people).

Those individuals who do not satisfy this are excluded from the
regression. But this becomes a problem because of the last
assumption that the error terms are correlated where p_,
Indicates the correlation coefficient. Hence a lower bound on u
suggests it too Is restricted.
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Heckman’s methodology

Heckman’s first insight in his 1979 Econometrica paper
was that this is can be approached as an omitted variables
problem. An estimate of the omitted variable would solve
this problem and hence solve the problem of sample
selection bias.
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Estimation methods

Heckman’s original two-step method
Maximum Likelihood method.
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Comparison of Estimates
(different data)

OLS w/ MLE of
OLS w/ Selected Heckman
Covariate All data sample SS model
Function

form ldent.

Educ 0.0803 0.0703 0.065
[-12.5%] [-19.2%]

Age 0.0122 0.0119 0.0115
[-2.5%] [-5.7%)]

% difference from OLS w/ all data]
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Summary - 1

The nature of censored regression models.
OLS estimators are biased as well as inconsistent.

The slope coefficients estimated by ML need to be
Interpreted carefully.

The truncated regression model differs from the censored
regression model. In the censored regression model, we
have data on the regressors for all the values of the
regressand including those values of the regressand that
are not observed or set to zero or some such limit.
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In p

mmary — 2

ractice, censored regression models may be preferable

to the truncated regression models because in the former

we |

nclude all the observations in the sample, whereas In

the latter we only include observations in the truncated

sam
The

ple
Heckman (1976) selection model, sometimes called

the Heckit model, is a method for estimating regression
models which suffer from sample selection bias. Under

the

Heckman selection framework, the dependent variable

IS only observable for a portion of the data.









