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Censored Data: 

Definitions
 Y is censored when we observe X for all observations, but we 

only know the true value of Y for a restricted range of 
observations. Values of Y in a certain range are reported as a 
single value or there is  significant clustering around a value, 
say 0. 
 If Y=k or Y>k for all Y =>Y is censored from below or left-

censored. 

 If Y=k or Y<k for all Y =>Y is censored from above or right-
censored.

 We usually think of an uncensored Y, Y*, the true value of Y 
when the censoring mechanism is not applied. We typically 
have all the observations for {Y,X}, but not {Y*,X}.



Truncated Data
 Y is truncated when we only observe X for observations 

where Y would not be censored. We do not have a full 

sample for {Y,X}, we exclude observations based on 

characteristics of Y.



Censored from below: 

Example - 1
 A Central Bank intervenes if the exchange rate hits the 

band’s lower limit. 

If St ≤ Ē => St= Ē.

 If Y ≤ 5, we do not know its exact value.



Censored from below: 

Example – 2 



Censored from below: 

Example – 3 
 The pdf of the observable variable, y, is a mixture of discrete 

(prob. mass at Y=5) and continuous (Prob[Y*>5]) 
distributions. 



Censored from below: 

Example – 4 
 Under censoring we assign the full probability in the 

censored region to the censoring point, 5.



New example
 Consumer maximizes utility by purchasing durable goods 

under constraint that total expenditures do not exceed 

income 

expenditure of durables ≥ cost of least expensive durable 

good 

 If available income is less than least expensive durable 

good then no expenditure is observed. Don’t know how 

much a household would have spent if a durable good 

could be purchased for less than the least expensive item.



One more
 Model how much an individual spends on alcohol in a 

given month. 

 A significant fraction have zero expenditure.



Truncated Data: Example 

– 1 
 If a family’s income is below certain level, we have no 

information about the family’s characteristics. 

If Y < 3, the value of X (or Y) is unknown. 

(Truncation from below.)



Truncated Data: Example 

– 2 



Truncated Data: Example 

– 3 
 Under data censoring, the censored distribution is a 

combination of a pmf plus a pdf. They add up to 1. We 

have a different situation under truncation. To create a pdf 

for Y we will use a conditional pdf.



Truncated Data: Example 

– 4 





Truncated regression
 Truncated regression is different from censored regression 

in the following way: 

 Censored regressions: The dependent variable may be 

censored, but you can include the censored observations in 

the regression 

 Truncated regressions: A subset of observations are dropped, 

thus, only the truncated data are available for the regression. 



Why do we have 

truncation?
 Truncation by survey design: 

 Studies of poverty. By survey’s design, families whose 

incomes are greater than that threshold are dropped from the 

sample. 

 Incidental Truncation: 

 Wage offer married women. Only those who are working 

has wage information. It is the people’s decision, not the 

survey’s design, that determines the sample selection.



Example
 Hausman and Wise’s analyse the New Jersey negative 

income tax experiment 

 Goal: Estimate earnings function for low income 

individuals 

 Truncation: Individuals with earnings greater than 

1.5×poverty level were excluded from the sample. 

 Two types of inference: 

 Inference about entire population in presence of truncation 

 Inference about sub-population observed



What happens when we 

apply OLS to a truncated 

data? 
 Suppose that you consider the following regression: 

yi= β0 + β1 xi + εi , 

 We have a random sample of size N.

 All assumptions are satisfied. (The most important

assumption is E(εi|xi)=0.)

 Instead of using all the N observations, we use a

subsample.

 Then, run OLS using this sub-sample (truncated sample)

only.



Under what conditions, 

does sample selection 

matter to OLS?
 OLS is Unbiased 

 Sample selection is randomly done. 

 Sample selection is determined solely by the value of x-

variable. For example, suppose that x is age. Then if you 

select sample if age is greater than 20 years old, this OLS 

is unbiased.



Truncation and OLS – 1 
 OLS is Biased 

 Sample selection is determined by the value of y-variable. 

 Example: Y is family income. We select the sample if y is greater 
than certain threshold. Then this OLS is biased. 

 Sample selection is correlated with εi. 

 Example: We run a wage regression wi =β0+β1 educi+ εi, where εi

contains unobserved ability. If sample is selected based on the 
unobserved ability, this OLS is biased. 

 In practice, this situation happens when the selection is based on 
the survey participant’s decision. Since the decision to participate 
is likely to be based on unobserved factors which are contained in 
ε, the selection is likely to be correlated with εi.



Truncation and OLS – 2 
 Consider the previous regression: 

yi= β0 + β1 xi + εi, 

 All CLM assumptions are satisfied. 

 Instead of using all the N observations, we use a subsample. Let si be 
a selection indicator: If si=1, then person i is included in the 
regression. If si=0, then person i is dropped from the data. 

 If we run OLS using the selected subsample, we use only the 
observation with si=1. That is, we run the following regression: 

siyi= β0si + β1sixi + siεi

 Now, sixi is the explanatory variable, and ui=siεi is the error term.

 OLS is unbiased if E(ui=siεi|sixi) = 0.

 We need check under what conditions the new condition is satisfied.



Truncation and OLS – 3 
 It is sufficient to check: E(ui|sixi)=0. (If this is zero, then 

new condition is also zero.) 

 E(ui|xi,si) = siE(εi|xi,si) - si is in the conditional set. 

 It is sufficient to check the condition which ensures 

E(ui|xi, si)=0.



Cases – 1 
 Sample selection is done randomly

 s is independent of ε and x. => E(ε|x,s)=E(ε|x). Since the 

assumptions are satisfied => we have E(ε|x)=0. => OLS is 

unbiased



Cases – 2 
 Sample is selected based solely on the value of x-variable.

 Example: We study trading in stocks, yi. One of the dependent 
variables, xi, is wealth, and we select person i, if wealth is greater 
than 50K. Then, 

si=1 if xi ≥50K, 

si=0 if xi. 

 Now, si is a deterministic function of xi .

 Since s is a deterministic function of x, it drops out from the 
conditioning set. Then, 

E(ε|x, s) = E(ε|x, s(x)) = E(ε|x) = 0 

 CLM assumptions satisfied. 

 OLS is unbiased. 



Cases – 3 
 Sample selection is based on the value of y-variable

 Example: We study determinants of wealth, Y. We select 

individuals whose wealth is smaller than 150K. Then, si=1 if 

yi <150K.

 Now, si depends on yi (and εi ). It cannot be dropped out 

from the conditioning set like we did before. Then, E(ε|x, 

s)≠E(ε|x) = 0.

 OLS is biased. 



Cases – 4 
 Sample selection is correlated with ui.

 The inclusion of a person in the sample depends on the person’s 
decision, not the surveyor's decision. This type of truncation is 
called the incidental truncation. The bias that arises from this type 
of sample selection is called the Sample Selection Bias. 

 Example: wage offer regression of married women: 

wagei = β0 + β1 edui + εi. 

 Since it is the woman’s decision to participate, this sample
selection is likely to be based on some unobservable factors
which are contained in εi. s cannot be dropped out from the
conditioning set:

 E(ε|x, s) ≠E(ε|x) = 0

 OLS is biased.



Cases – 5 
 The selection rule based on the x-variable may be 

correlated with εi.

 Example: X is IQ. A survey participant responds if IQ > v. 

Now, the sample selection is based on x-variable and a 

random error v. 

 Two cases: 

 If v is independent of ε, then it does not cause a bias. 

 If v is correlated with ε, then this OLS will be biased. 



Estimation with 

Truncated Data
 Under cases (1), (2), (5) OLS is appropriate. 

 Under case (3), we use Truncated regression. 

 Under case (4) –i.e., incidental truncation-, we use the 

Heckman Sample Selection Correction method. This is 

also called the Heckit model.



Truncated Regression – 1 
 The truncation is based on the y-variable

 We have the following regression satisfies all CLM 
assumptions: 

yi= xi’β + εi , εi~N(0, σ2)

 We sample only if yi< ci

 Observations dropped if yi ≥ ci by design. 

 We know the exact value of ci for each person. 

 We know that OLS on the truncated data will cause biases. 
The model that produces unbiased estimate is based on the 
ML Estimation.



Truncated Regression – 2 



Truncated Normal: 

Moments
 Let y*~ N(µ*, σ2 ) and α = (c – µ*)/σ. 

 First moment: E[y*|y> c] = µ* + σ λ(α) <= This is the 

truncated regression. 

 If µ*>0 and the truncation is from below, i.e., λ(α) >0, the mean 

of the truncated variable is greater than the original mean 

 Note: For the standard normal distribution λ(α) is the mean of the 

truncated distribution.

 Second moment: 

 Var[y*|y> c] = σ2[1 - δ(α)], where δ(α) = λ(α) [λ(α)- α] 

 Truncation reduces variance! This result is general, it applies to 

upper or lower truncation given that 0 ≤ δ(α) ≤ 1 



Truncated Normal – 1 
 Model: yi* = Xiβ + εi

 Data: y = y* | y* > 0



Truncated Normal – 2 
 Truncated (from below –i.e., y*>0) regression model: 

E(yi| yi* > 0,Xi) = Xiβ + σλi> E(yi|Xi) 



Truncated Regression: ML 

Estimation
 The likelihood contribution for ith observation is given by

 The likelihood function is given by

 The values of (β, σ) that maximizes LnL are the ML 

estimators of the Truncated Regression. 
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The partial effects
 The estimated βk shows the effect of xki on yi. Thus, 
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Example – 1 
 A popularly used model in these situations is the Tobit 

model, which was originally developed by James Tobin, a 

Nobel laureate economist.

 For this purpose we use the data collected by Mroz. His 

sample gives data on 753 married women, 428 of whom 

worked outside the home and 325 of whom did not work 

outside the home, and hence had zero hours of work.



OLS estimation of the 

hours worked function



Analysis of OLS
 The results in this table are to be interpreted in the 

framework of the standard linear regression model. 

 For example, if husband’s wages go up by a dollar, the 

average hours worked by married women declines by 

about 71 hours, ceteris paribus. 

 Except for education, all the other coefficients seem to be 

highly statistically significant. 

 But beware of these results, for in our sample 325 married 

women had zero hours of work.



OLS estimation of hours 

function for working 

women only



Analysis
 The education variable now seems to be highly 

significant, although it has a negative sign.

 This is because OLS estimates of censored regression 

models, whether we include the whole sample or a subset 

of the sample, are biased as well as inconsistent – that is, 

no matter how large the sample size is, the estimated 

parameters will not converge to their true values.



Graphical analysis
 Hours worked and family 

income, full sample

 Hours vs. family income 
for working women

In the left figure there are several observations (actually 325) that lie on the horizontal axis 

because for these observations the hours worked are zero. In the right figure none of the 

observations lie on the horizontal axis, for these observations are for 428 working women. The 

slope coefficients of the regression lines in the two figures will obviously be different.



The Tobit model
 The Yi* are desired hours of work. Now

 The variable Yi* is called a latent variable, the variable of 

primary interest. 
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ML estimation of the 

censored regression 

model



Interpretation of the Tobit 

estimates
 For example, if the husband’s wages go up, on average, a 

woman will work less in the labor market, ceteris paribus. 

 The education variable is not significant in OLS, but it is 

in censored OLS, although it has a negative sign. Now it is 

significant and has a positive sign, which makes sense.



But…
 We cannot interpret the Tobit coefficient of a regressor as 

giving the marginal impact of that regressor on the mean 

value of the observed regressand. This is because in the 

Tobit type censored regression models a unit change in the 

value of a regressor has two effects:

 the effect on the mean value of the observed regressand, 

 the effect on the probability that Yi * is actually observed.



Age impact
 Take for instance the impact of age. The coefficient for age of about –54, it means 

that, holding other variables constant, if age increases by a year, its direct impact on 
the hours worked per year will be a decrease by about 54 hours per year and the 
probability of a married woman entering the labor force will also decrease. 

 So we have to multiply –54 by the probability that this will happen. Unless we know 
the latter, we will not able to compute the aggregate impact of an increase in age on 
the hours worked. And this probability calculation depends on all the regressors in 
the model and their coefficients.

 Interestingly, the slope coefficient gives directly the marginal impact of a regressor
on the latent variable Yi*. Thus, the coefficient of the age variable of –54 means if 
age increases by a year, the desired hours of work will decrease by 54 hours, ceteris 
paribus. Of course, we do not actually observe the desired hours of work, for it is an 
abstract construct.

 In our example we have 753 observations. It is a laborious task to compute the 
marginal impact of each regressor for all the 753 observations. In practice, one can 
compute the marginal impact at the average value of each regressor.



Non-normality of error 

term
 In the censored regression models under non-normality of 

the error term the estimators are not consistent. 

 Again, some remedial methods are suggested in the 

literature. One is to change the error distribution 

assumption. For example, Eviews can estimate such 

regression models under different probability distribution 

assumptions for the error term (such as logistic and 

extreme value). 



Heteroscedasticity
 In the usual linear regression model, if the error term is 

heteroscedastic, the OLS estimators are consistent, though 

not efficient. In Tobit-type models, however, the 

estimators are neither consistent nor efficient.



Robust estimation of the 

Tobit model



Truncated sample 

regression models
 In our illustrative example, we do not have data on hours 

worked for 325 women. Therefore we may not consider 

information about socio-economic variables for these 

observations, even though we have that information on 

them in the current example.

 However, the OLS estimators are inconsistent in this 

situation.



Truncated normal 

distribution
• If we compare the results of 

the censored regression 

with the truncated 

regression here, we will see 

differences in the 

magnitude and statistical 

significance of the 

coefficients. 

• Notice particularly that the 

education coefficient is 

positive in the censored 

regression model, but is 

negative in the truncated 

regression model.



Interpretation of the 

truncated regression 

coefficients
 As in the Tobit model, an individual regression coefficient 

measures the marginal effect of that variable on the mean 
value of the regressand for all observations – that is, 
including the non-included observations. 

 But if we consider only the observations in the (truncated) 
sample, then the relevant (partial) regression coefficient 
has to be multiplied by a factor which is smaller than 1. 
Hence, the within-sample marginal effect of a regressor is 
smaller (in absolute value) than the value of the 
coefficient of that variable, as in the case of the Tobit 
model.



Tobit vs truncated 

regression model
 Which is preferable?

 Since the Tobit model uses more information (753 

observations) than the truncated regression model (428 

observations), estimates obtained from Tobit are expected 

to be more efficient.





Heckman Selection Model
 The Heckman (1976) selection model, sometimes called the 

Heckit model, is a method for estimating regression models 

which suffer from sample selection bias. 

 Under the Heckman selection framework, the dependent 

variable  is only observable for a portion of the data. 

 A classic example, in economics, of the sample selection 

problem is the wage equation for women, whereby a woman’s 

wage is only observed if she makes the decision to enter the 

work place, and is unobservable if she does not. 

 Heckman’s (1976) paper that introduced the Heckman 

Selection model worked on this very problem.



The model
 The wage equation

Wi = βXi + εi

where Wi is the wage, Xi observed variables relating to the i-th
person’s productivity and εi is an error term. W is observed only for
workers, i.e. only people in work receive a wage.

 Sample selection (i.e. being in the labour force so W is observed). 
There is a second equation relating to employment:

E*i = Ziγ + ui

E*i = Wi – E'i is the difference between the wage and the reservation
wage E'i. The reservation wage is the minimum wage at which the i-th
individual is prepared to work. If the wage is below that they choose
not to work. We observe only an indicator variable for employment
defined as E=1 if E*i>0 and E=0 otherwise.



Assumptions
 (ε,u) ~ N(0,0,σ2

ε, σ
2
u,ρεu)

That is both error terms are normally distributed with mean 
0, variances as indicated and the error terms are correlated 
where ρεu indicates the correlation coefficient.

 (ε,u) is independent of X and Z. 

The error terms are independent of both sets of explanatory 
variables.

 Var(u) = σ2
u = 1

This is not so much an assumption as a simplification it 
normalises the variance of the error term in what will be a 
probit regression.



The sample selection 

problem – 1 
 The key problem is that in regressing wages on 

characteristics for those in employment we are not 

observing the equation for the population as a whole. 

 Those in employment will tend to have higher wages than 

those not in the labour force would have (that is why they 

are not in the labour force). 

 Hence the results will tend to be biased (sample selection 

bias) and e.g. we are likely to get biased results when 

estimating say the returns to education. 



The sample selection 

problem – 2 
 For example two groups of people (i) industrious; (ii) lazy. 

Industrious people  get higher wages and have jobs, lazy 

people do not. In effect we are doing the regression in this 

simplified example on the industrious part of the labour force. 

The returns to education will be estimated on them alone not 

the whole of the population (which includes the lazy people).

 Those individuals who do not satisfy this are excluded from the 

regression. But this becomes a problem because of the last 

assumption that the error terms are correlated where ρεu

indicates the correlation coefficient. Hence a lower bound on u

suggests it too is restricted. 



Heckman’s methodology
 Heckman’s first insight in his 1979 Econometrica paper 

was that this is can be approached as an omitted variables 

problem. An estimate of the omitted variable would solve 

this problem and hence solve the problem of sample 

selection bias. 



Estimation methods
 Heckman’s original two-step method

 Maximum Likelihood method.



Comparison of Estimates 

(different data)

Covariate

OLS w/

All data

OLS w/

Selected 

sample

MLE of 

Heckman 

SS model

Function 

form Ident.

Educ 0.0803 0.0703

[-12.5%]

0.065

[-19.2%]

Age 0.0122 0.0119

[-2.5%]

0.0115

[-5.7%]

[% difference from OLS w/ all data]





Summary – 1 
 The nature of censored regression models.

 OLS estimators are biased as well as inconsistent.

 The slope coefficients estimated by ML need to be 

interpreted carefully.

 The truncated regression model differs from the censored 

regression model. In the censored regression model, we 

have data on the regressors for all the values of the 

regressand including those values of the regressand that 

are not observed or set to zero or some such limit. 



Summary – 2 
 In practice, censored regression models may be preferable 

to the truncated regression models because in the former 

we include all the observations in the sample, whereas in 

the latter we only include observations in the truncated 

sample

 The Heckman (1976) selection model, sometimes called 

the Heckit model, is a method for estimating regression 

models which suffer from sample selection bias. Under 

the Heckman selection framework, the dependent variable  

is only observable for a portion of the data. 






