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Four Types of Scales

» mutually exclusive categories with no
logical order.

» mutually exclusive categories with logical
rank order.

» ordered data with equal distance between
each point (no absolute zero).

» ordered data with equal distance between
each point (with a “true” zero).



Definition

» The ordered multinomial logistic model
enables us to model ordinally scaled
dependent variables with one or more
Independent variables.

» These IV(s) can take many different forms
(ie. real numbers values, integers,
categorical, binomial, etc.).




Does this Occur Much?

* “Ordinal data are the most frequently encountered type of data in
the social sciences” (Johnson & Albert, 1999, p. 126).

» Examples

o)

o)

o)

o)

Yes, maybe, no
Likert scale (Strongly Agree — Strongly Disagree)
Always, frequently, sometimes, rarely, never

No hs diploma, hs diploma, some college, bachelor’s degree, master’s
degree, doctoral degree

Free school lunch, reduced school lunch, full price lunch

0-10k per year, 10-20K per year, 20-30K per year, 30 — 60K per year, >
60K per year

Low, medium, high
Basic math, regular math, pre-AP math, AP math

Nele’s dancing ability, Meg’s dancing ability, Saralyn’s dancing ability,
Jose’s dancing ability, Kyle’s dancing ability, Braden’s dancing ability, a
rock
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What is this for?

« extension of the logistic regresion model for binary
response

» when your DV has multiple, ordered categories.

Examples:
» Bond ratings (AAA, AA, A, etc.),
» Grades (MVG, VG, G, etc.),

« opinion surveys (strongly agree, agree, disagree,
strongly disagree)

» Some type of continuous outcome you might want to
collapse - spending, ’performance’ (high, medium,
low)

» Employment (fully, partial, unemploymed)



Assumptions of Ordered
Logit Models - 1

» Maximum likelihood estimation — again,
no ’sum of squares’ estimation — this uses
an Iterative process that converges the
model’s log likelihood in comparison to
an “empty model’ (Iteration 0)

S




Assumptions of Ordered
Logit Models - 2

» Number of ordered responses <6. After
the DV takes on 6+ values, the model can
be run using OLS If distance between
categories equal.

S




Assumptions of Ordered
Logit Models - 3

» Proportional odds assumption (aka
parallel regression): B’s for one outcome
group (low Bond rating countries) are the
same as any other group (median, or high
Bond rating states) — Is an assumption to
Increase efficiancy In our estimates.




Note!

o we do NOT need to assume the distance
between each Interval In Y Is the same!
(as we would if using OLYS)




Our algorithm

» we start with an observed, ordinal variable (YY)

» as In most models of estimation, Y is a function of
a latent, unobserved variable Y*

» the variable Y* has "threshold points” ("M’)— the
value of Y depends on whether an observation has
crossed these thresholds. If Y has 3 groups, then 2
cut-offs:

. Y, = 1ifY, *is < M,
Y, =2ifM, is<Y*<M,




Estimating the model

So, as in all statistical models we’ve covered, our latent variable Y* is a
function of our right-hand side I'V’s plus some level of error:

K
y'. = Z.kaki te=2Zi+¢g
k=1

Our model will estimate part of this:

k
Zi=) B =E(r")
k=1

So Z, basically is Y* as a function of some disturbance (not a perfect
measure of Y*). Itis of a different scale than Y (e.g. continuous), but our
estimates can give us Pr(Y=1, 2,..X) based on the value of Z.

Like binary Logit, our link function is the log of the odds (logit), giving us
odds/probability that an observation falls into a given Y category based on
its levels of X’s. Just like the probit and logit models, Z is continuous 0-1.



Important!

» There 1s no ’traditional’ intercept, just
“cut-off points’ (M) (like an intercept) &
that they are different for each level of Y,
but Beta’s do NOT vary for the levels of
Y!




The point

» We want to estimate the probability that Y
(observed variable) will take on a given value (in
this case, 1, 2 or 3).

« Z helps us estimate the probability that a given
observation will fall into a given Y category

1
: P(Y - 1) - 1+exp(Z;—M,)

1 1
1+exp(Z;i—M;) 1+exp(Z;—M;)

« P(Y =2) =

1
1+exp(Z;—M>,)

«P(Y =3)=1-



Important!

» So with the estimate value of Z and the
assumed logistic distribution of the error
term, we can estimate the probability that
an observation will fall into one of the
categories of Y.




Example - 1

» The data set contains variables on 200
students. The outcome variable Is prog,
program type. The predictor variables are
soclal economic status, ses, a three-level
categorical variable and writing score,
write, a continuous variable.




Example - 2
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Example - 3

type of ses )
program low middle high | Total
___________ +_________________________________+__________
general 16 20 9 45
academic 19 44 42 185
vocation 12 31 7 58
___________ +_________________________________+__________
Total | 47 95 58 | 200
sum ses science socst female
Variable | Obs Mean Std. Dev Min Max
_____________ +________________________________________________________
ses | 200 2.055 .7242914 1 3
science | 200 51.85 9.900891 26 74
socst | 200 52.405 10.73579 26 71
female | 200 .545 .4992205 0 1




Example - 4

» Let’s say we want to estimate ’socio-
economic stats’ (SES) as a function of test
scores and gender

o SES;=c¢;,_1 +F(science) +
B (socialstudies) + f(female) + ¢

o We have 200 obs In our data — let’s see
how the summary stats look:




Example -5

» We see that higher science & social
science scores lead to higher SES & that
females, on average, have lower SES

Ordered logistic regression Nomber of cbs = 200
IR chi2(3) = 31 .56

Prob > chiZ2 = 0.0000

Log likelihood = -194.80235 Psendo R2 = 0.074%9
ses | Coef 5td. Err F=|z| [95% Conf. Interval]
_____________ e _
science | . 0300201 0165862 1.81 0.070 —.0024882 06825284

socst | .0531819 0152711 3.48 0.000 LD232512 0831127
female | -.48235977 27965945 -1.72 0.085 -1.03058%9 0657934




Example - 6

» Coefficients are pretty meaningless, so,
let’s calculate the PR(Y=1, 2 and 3) for a
female who got average test score on both
tests.




Getting our ”thresholds”

» G1 (low SES): < 2.75
e >2.75 G2 (med. SES) <5.10

- G3 (high SES): >5.10




Example - 7

» Calculating "Zi’ for a female with average test scores (from 'sum’) & our
Beta estimates from the last slide:

o Zi=(0.03*51.85(science) + 0.0532*52.405(soc. Sci) -

0.4824*1(female)
» Zi=3.86
1 1
© PY=1= 1+exp(Z;—M;)  1+exp(3.86—2.755) 249
1 1 1
o P(Y = %) T 1+exp(Z;—M,) B 1+exp(Z;—M,) 1+exp(3.86—5.105) B
=.528
1+exp(3.86—2.755)
« P(r=3)=1- =1 . =.223
- 1+exp(Z;—My) 1+exp(3.86—5.105)

» **Total should add up to 1**




Example - 8

» So, a female with average test scores has a
24.9%, 52.8% and 22.3% probability of
being in the low, medium and high levels
of SES respectively!




Model diagnostics

» Just like with logit, here we have similar
tests for ’goodness of fit

» Use the LR 92 statistic (& p-value) to test if
all coefficients in the model # 0

= You can test nested models (omitted
variables) with the LR test

» Can use a Chow test to check for structural
breaks (sub-groups)



Note!

» In small samples, (say under 50 or so), you
will often violate the Proportional/paralell
odds assumption because outlying

obesrvations will have a large impact on the
model

» |n this case, the estimates will be biased.

» To remedy this, you can use

GENERALIZED LEAST SQUARES
estimates




S

~ MULTINOMIAL LOGIT




Multinomial Logit

Similar to ordered logit, when our DV takes on 2+ values, but still
limited — 3, 4, 5 categories for example.

Unlike ordered logit, the categories of the DV are 'not ordered’, but
are nominal categories (aka ’categorical’).

We are interested in the relative probability of these outcomes using
a common set of parameters (IV’s)

For example - given a set of IV’s (education, country/regional
origin, parent’s income, rural/urban) we might want to know the
following:

Choice of a foreign language — English, Spanish, Chinese, Swedish
Choice of drink: coffee, Coke, juice, wine

Choice of occupation — police, teacher, or health care worker

Mode of transportation — car, bus, tram, train

\oting for a party or bloc — R-G, Alliansen or S.D.



Assumptions of 'mlogit’
models

* A common set of parameters (IV’s) can linearly predict
probabilities of DV categorical outcomes, but do not assume
error term Is constant across Y outcomes.

» Unlike Ologit, these IV’s are CASE SPECIFIC — have
Independent effects on each category of the DV (e.g. different
Betas across categories — no ’parallel odds assumption’).

» ”Independence of Irrelevant Alternatives” (IIA, from Arrow’s
’impossibility theorom) — the odds/probability of chosing one
case of the DV over another does not depend on another’s
presence or absence, ’irrelevant alternatives’ **strong
assumption**

» **Multinomial logit is not appropriate if the assumption is
violated.




Multinomial Logit
Assumption 2 Examples

» [IA Example 1: Voting for certain parties

» **For ex., the probabilities of someone S, V, L, M, KD or,
S.D. vs. M does not change if MP is added or taken away

> Is 1A assumption likely met in this election model?

> Probably not. If MP were removed, those voters would likely
vote for V or S.

- Removal of MP would increase likleyhood for S or V relative to M

» [IA Example 2: Consumer Preferences
> Options: coffee, juice, wine, Coke
+ Might meet 1A assumption
- Options: coffee, juice, Coke, Pepsi

- Won’t meet ITA assumption. Coke & Pepsi are very similar —
substitutable.

- Removal of Pepsi will drastically change odds ratios for coke vs. others.




Long and Freese (2006):

* “Multinomial and conditional logit models
should only be used in cases where the
alternatives “can plausibly be assumed to be
distinct and weighed independently in the
eyes of the decision-maker.”

» Categories should be “distinct alternatives”,
not substitutes. Theory & argument very
Important

» Note: There are some formal tests for
violation of IIA. But they don’t always work
well. Be cautious of them.




Diagnositics with MLogit

» Again, like logit (and ologit), we test the
signficance of the full model with the >
statistic, and *improvements’ (or omitted/
Irellevant variables) with an LR test using
the log likelihood ratios.

» Again, Pseudeo-R2 i1s meaningless by
Itself — only compared to other models
with the same sample. BUT, the higher,
the better.
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Description

» Again, we determine the use of an Event Count
model by the structure of our DV

» So far, we’ve looked at variables that have normal
and binary distributions (OLS, and Logit). We’ll
now consider a 3rd type, ’Gamma’ distributions

» In this case, the DV is:
» a FIXED number of outcomes & NOT binary

 For ex., can be units of time (days, years, etc),
units in fixed time (individual or geographic unit)

» Ordinal (more later if your DV iIs continuous)

» Positive (but can take ’0’)




Some examples

» Number of new political parties entering parliament in a given
election year

» The number of political protests or coup d’Etats in a country-year
» Number of presidential vetos in a year or mandate period
» Number of children in a household

» Number of vaccinations a child gets in a year, or doctor visits an
adult makes

« Number of civic organizations an individual joins or is a member of
In a given year.




Key characteristics of
’Event Data’ - 1

» The count of events is non-negative
» are independent of one another

» Counts must be integers (e.g. discrete) — cannot be
2.2,3.7but 2 or4.

» Can have 1-parameter (1) distribution (mean=VAR)

» Using a histogram, we see that the distribution of Yi
outcomes Is usually large in 0 or 1, and diminishes
rapidly from the 2nd or 3rd outcome on

» The distribution is thus NOT normal (’Gausian’)— It IS
a “gamma distribution: for count data we use these
models:

» 1.Poisson
2. negativel binomal



Key characteristics of

C ‘Event Data’ - 2

©

0 1 2 3 4
# of new ACP's gaining seats in Parliament



Poisson Models:
Assumptlons & workings

Like logit, estimates with Maximum Likelihood estimation (MLE),

which finds the value of the parameter that fits the model ’best’ (log
likelihood)

e Qur ’link function” in this case is Lambda — A
o Goals are to:

» 1) estimate the increase Pr(Y=n) for a unit change in X. In Poisson
regression, the model expresses the log outcome rate as a linear
function of a set of predictors. (like Logit, B’s need to be
transformed for interpretation)

» 2) predict the expected count-outcome (group) for an observation
(like ologit). But because of our DV distribution, the normal/logit
curve can’t be used, thus the Gamma distribution fills this gap.




Why better than OLS??

« OLS will produce a linear estimate of the relationship
between BX and Y that will be less than 0 and greater
than our highest count (unrealistic predictions).

« OLS assumes the difference Is the same between all
counts in Y (0 to 1 is the same as 3 to 4), like Ologit,
Poisson does not.

 we will almost always have heteroskadasticity (as
there will probably be more VAR in Y-outcomes with
more observations)

» error term iIs not normally distributed




The Poisson distribution

/'{k -1
o Pr(Yl = k) = :!
« A s calculated as the
mean of Yi

» e *isequal to the
exponent inverse of
Lambda

o K is the number of
outcomesinY

» Kl isthe factorial of K
(ex. 41 =4x3x2x1
= 24)

» A s the expected value
of Yi (mean of DV)
and also its variance:

1.0— WW
o— o I:'_':l—
0.8 »— o=
@ o
< 0.6} ¢ o
¥
To0ab, * .
' o—
o @ AN=1
02 ¢ o * A=4
R
0075 5 10 15 20
k
So:

A= E(Y) = Var(Y)

Notice when A =1 the CDF is highly
concentrated between 0 and 10, as
Lamda increases, what does the CDF
look like?


//upload.wikimedia.org/wikipedia/commons/7/7c/Poisson_cdf.svg

Poisson distributions at
different levels of Lambda

o 7:' is equal to rate of the event (DV)

» S0, If the mean of the distribution (A) is high
enough, than OLS is ok. So we can generate
Pr(Y=n|Xi) in a similar way as a normal
curve — e.g. Mean approaches 10

o« BUT the data we will discuss will have a
mean closer to about 1 or less

» 3 examples with K=20 & 2=1,4 & 10




Poisson distributions at

different levels of Lambda
-2
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Important assumptions of
a Poisson Model

The observations are assumed to be independent of one another

» Logarithm of rate changes in the DV are expressed linearly with
equal increment increases in the IV’s

» “Equidispersion” — e.g., the mean of the DV = the Variance
(although this does not happen that very often).

» Breaking this is called ”overdispearsion” — when VAR in our data is
greater than the model assumes. If violated, we can’t use Poisson
for hypothesis testing.

« **If outcome cases of Y are not independent, then we will mostly
likely see “overdispersion” — which if large enough, will lead us to
use a Negative Binomial model (more later...)




Overdispersion: Causes &
Consequences

» Possible causes:

1. a poorly fitted model
> Omited variables
> Qutliers
> Wrong functional form of 1+ of our IV’s in the model
> Unaccounted heteroskadescticity from structural breaks.

2. VAR(Y;) > u; (variance of our data greater than the mean)
-very common with individual level data!

» Consequences:
> Underestimated SE’s (think opposite effect of multicollinearity)
> Qverstimated p-values & poor prediections




Important extra model
test in Poisson

» Before going on to interpret the model’s Betas, we
need to know whether we’ve ’chosen correctly’
with Poisson — does the Poisson estimation form
fit our data?? E.g. Is the Gamma distribution
appropriate?

» Otherwise, we might consider ologit

» A ’goodness of fit’ test (y?) will let us know If we
have a problem from — the H, is the the model’s
form DOES fit our data, a rejectlon of H, means
that Poisson might be the WRONG estlmatlon

* Other reasons for rejection would be omitted I'V’s
or incorrect functional forms




Time to interpret

Like logit, the Betas are basically
meaningless, but - Poisson can give
us Odds ratio (IRR), or ’incident
rate ratio’ = exponentiated Betas
(like logit)

MXprogram:academic_

/1|Xprggram=general
exp (.B Xprogram)

=exp(1.08) = 2.95

Ex., holding math score constant, a
student in an academic program
(compared with general) has 2.95
times the incident rate

Also, we see that for every increase
in one unit in a math score (e.g.
’1”), the percent change in the
incident rate increases by 7%,
holding program constant

obs 200
wald Chi2 80.15
pr>Chi2 0.000
Psuedo R2 0.2118

no. of Awards Beta robsuts.e. IRR

program (comparison=general)

academic 1.08 0.32 2.956

vocational 0.369 0.401 1.447

math score 0.07 0.01 1.07

const. -5.24 0.65




Negative Binomial Models
(NBM) 1

Are also ”count” models for limited DV’s, very similar to Poisson
In both assumptions and interpretation

» Uses a version of Lambda as a link function to estimate Pr(Y) as
well

» Key difference from Poisson is that the Var(Y) is assumed to be
larger than the Mean(Y) (e.g. ’overdispersion’).

« Also, if we cannot assume that the outcomes of Y are independent
from one another, than a NBM might be more appropriate

A matter of efficiency: we prefer Poisson becasue of greater
efficiency, but there is a clear solution when we violate key model
assumptions, so we take NBM instead.




Negative Binomial Models
(NBM) - 2

» Like Poisson, the NBM assumes constant variance

In Y, which is estimated by maximum likelihood
as:

o Var(Y) = A+A%/a

» a = the ’dispearsion parameter’ (set at 0’ in
Poisson), so instead of one parameter being
estimated, there are 2 (which 1s why less
‘efficient’)

» Uses logged Betas, so like logit (& Poisson) can
use Odds ratios

» S0, NBM’s are basically a more general type of
Poisson model.




Key differences

» Because of the quadradic function in the
assumed Var(Y), they are LESS EFFICIENT
— Poisson will produce SMALLER s.e.’s for
beta estimates, in med-large samples, the

estimates are consistant (not-biased)
however.

» Following, NBM’s will result in larger
expected probabilities for smaller counts

(e.g. # of Y1 outcomes) compared with
Poisson

» NBM’s will have slightly larger probabilities
for larger counts



Example: common
Poisson vs. Negative
C binomial distributions




NBM vs. Poisson for our
example

Negative Binomial Poisson

DV=Absences beta s.e. beta s.e.
math -0.0045 0.0025 -0.0049  0.0016
Baseline=general

Academic -0.558 0.192 -0.554 0.109
Vocational -0.956 0.199 -0.958 .120
constant 1.85 0.21 1.87 0.121

See how close the Betas are?

This shows that Poisson is still a consistent estimator, dispite
overdispersion

However, what 1s the difference here®

Yes, s.e.’s considerably larger in NBM, leads to higher Z-scores
in Poisson and maybe greater type-1 error
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Summary review

Sometimes, our DV’s will have a limited distribution: 0/1, 0-4, 1-5, categorical responses,
etc.

This results in many problems for OLS, such as heterogeneity of the error term, which
gives biased and and unrealistic estimation for our betas.

Like in OLS, we want to make predictions about Pr(Y) given values of Xi, etc., but we
need to transform our Y’s to probabilities, odds, etc. using LINK FUNCTIONS.

For binary variables, our link functions can be logit or probit. Same for ordinal or
categorical data.

For count data, we take advantage of gamma distributions, and use Lamba as our link
function (for Poission and NBM)

Remember, none of the betas produced make intuative sense, and thus they need to be
transformed (odds, pr, etc.) margins.

Also, the choice of any of these models is based on your Dep. Variable!!
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