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Situating the Model
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Four Types of Scales

 mutually exclusive categories with no 

logical order.

 mutually exclusive categories with logical 

rank order.

 ordered data with equal distance between 

each point (no absolute zero).

 ordered data with equal distance between 

each point (with a “true” zero).



Definition

 The ordered multinomial logistic model 

enables us to model ordinally scaled 

dependent variables with one or more 

independent variables.

 These IV(s) can take many different forms 

(ie. real numbers values, integers, 

categorical, binomial, etc.).



Does this Occur Much?

 “Ordinal data are the most frequently encountered type of data in 
the social sciences” (Johnson & Albert, 1999, p. 126).  

 Examples

◦ Yes, maybe, no

◦ Likert scale (Strongly Agree – Strongly Disagree)

◦ Always, frequently, sometimes, rarely, never

◦ No hs diploma, hs diploma, some college, bachelor’s degree, master’s 
degree, doctoral degree

◦ Free school lunch, reduced school lunch, full price lunch

◦ 0-10k per year, 10-20K per year, 20-30K per year, 30 – 60K per year, > 
60K per year

◦ Low, medium, high

◦ Basic math, regular math, pre-AP math, AP math

◦ Nele’s dancing ability, Meg’s dancing ability, Saralyn’s dancing ability, 
Jose’s dancing ability, Kyle’s dancing ability, Braden’s dancing ability, a 
rock



ORDERED AND 
MULTINOMIAL LOGIT/ 
PROBIT



What is this for?

 extension of the logistic regresion model for binary 
response

 when your DV has multiple, ordered categories.

Examples:

 Bond ratings (AAA, AA, A, etc.), 

 Grades (MVG, VG, G, etc.), 

 opinion surveys (strongly agree, agree, disagree, 
strongly disagree) 

 Some type of continuous outcome you might want to 
collapse - spending, ’performance’ (high, medium, 
low)

 Employment (fully, partial, unemploymed)



Assumptions of Ordered 

Logit Models – 1 

 Maximum likelihood estimation – again, 

no ’sum of squares’ estimation – this uses 

an iterative process that converges the 

model’s log likelihood in comparison to 

an ’empty model’ (Iteration 0)



Assumptions of Ordered 

Logit Models – 2 

 Number of ordered responses <6.  After 

the DV takes on 6+ values, the model can 

be run using OLS if distance between 

categories equal.



Assumptions of Ordered 

Logit Models – 3 

 Proportional odds assumption (aka 

parallel regression): β’s for one outcome 

group (low Bond rating countries) are the 

same as any other group (median, or high 

Bond rating states) – is an assumption to 

increase efficiancy in our estimates. 



Note!

 we do NOT need to assume the distance 

between each interval in Y is the same! 

(as we would if using OLS)



Our algorithm

 we start with an observed, ordinal variable (Y)

 as in most models of estimation, Y is a function of 
a latent, unobserved variable Y*

 the variable Y* has ”threshold points” (’M’)– the 
value of Y depends on whether an observation has 
crossed these thresholds.  If Y has 3 groups, then 2 
cut-offs:

 𝑌𝑖 = 1 if 𝑌𝑖 * is ≤ 𝑀1

 𝑌𝑖 = 2 if 𝑀1 is ≤ 𝑌𝑖* ≤ 𝑀2

 𝑌𝑖 = 3 if 𝑌𝑖 * is ≥ 𝑀2



Estimating the model
 So, as in all statistical models we’ve covered, our latent variable Y* is a 

function of our right-hand side IV’s plus some level of error:

𝑌∗
𝑖
= ෍

𝑘=1

𝑘

𝛽𝑘𝑋𝑘𝑖 + 𝜀𝑖 = 𝑍𝑖 +𝜀𝑖

 Our model will estimate part of this:

𝑍𝑖 = ෍

𝑘=1

𝑘

𝛽𝑘𝑋𝑘𝑖 = 𝐸 𝑌∗
𝑖

 So Z, basically is Y* as a function of some disturbance (not a perfect 
measure of Y*).  It is of a different scale than Y (e.g. continuous), but our 
estimates can give us Pr(Y=1, 2,..X) based on the value of Z.

 Like binary Logit, our link function is the log of the odds (logit), giving us
odds/probability that an observation falls into a given Y category based on 
its levels of X’s.  Just like the probit and logit models, Z is continuous 0-1.



Important!

 There is no ’traditional’ intercept, just 

’cut-off points’ (M) (like an intercept) & 

that they are different for each level of Y, 

but Beta’s do NOT vary for the levels of 

Y!



The point

 We want to estimate the probability that Y 
(observed variable) will take on a given value (in 
this case, 1, 2 or 3).  

 Z helps us estimate the probability that a given 
observation will fall into a given Y category

 𝑃 𝑌 = 1 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1

 𝑃 𝑌 = 2 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
−

1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1

 𝑃 𝑌 = 3 = 1 −
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2



Important!

 So with the estimate value of Z and the 

assumed logistic distribution of the error 

term, we can estimate the probability that 

an observation will fall into one of the 

categories of Y.



Example – 1 

 The data set contains variables on 200 

students. The outcome variable is prog, 

program type. The predictor variables are 

social economic status, ses, a three-level 

categorical variable and writing score, 

write, a continuous variable.



Example – 2 



Example – 3 

sum  ses science socst female 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         ses |       200       2.055    .7242914          1          3 

     science |       200       51.85    9.900891         26         74 

       socst |       200      52.405    10.73579         26         71 

      female |       200        .545    .4992205          0          1 



Example – 4

 Let’s say we want to estimate ’socio-

economic stats’ (SES) as a function of test 

scores and gender

 𝑆𝐸𝑆𝑖=∝𝑘−1 +𝛽 𝑠𝑐𝑖𝑒𝑛𝑐𝑒 +
𝛽 𝑠𝑜𝑐𝑖𝑎𝑙𝑠𝑡𝑢𝑑𝑖𝑒𝑠 + 𝛽 𝑓𝑒𝑚𝑎𝑙𝑒 + 𝜖𝑖

 We have 200 obs in our data – let’s see

how the summary stats look:



Example – 5

 We see that higher science & social 

science scores lead to higher SES & that 

females, on average, have lower SES



Example – 6

 Coefficients are pretty meaningless, so, 

let’s calculate the PR(Y=1, 2 and 3) for a 

female who got average test score on both 

tests.



Getting our ”thresholds” 

 G1 (low SES): < 2.75

 >2.75 G2 (med. SES) <5.10

 G3 (high SES): >5.10



Example – 7
 Calculating ’Zi’ for a female with average test scores (from ’sum’) & our

Beta estimates from the last slide:

 Zi = (0.03*51.85(science) + 0.0532*52.405(soc. Sci) –
0.4824*1(female)

 Zi = 3.86

 𝑃 𝑌 = 1 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1
= 

1

1+exp(3.86−2.755)
= .249

 𝑃 𝑌 = 2 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
−

1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1
= 

1

1+exp(3.86−5.105)
−

1

1+exp(3.86−2.755)
= .528

 𝑃 𝑌 = 3 = 1 −
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
= 1 −

1

1+exp(3.86−5.105)
= .223

 **Total should add up to 1**



Example – 8

 So, a female with average test scores has a 

24.9%, 52.8% and 22.3% probability of 

being in the low, medium and high levels 

of SES respectively!



Model diagnostics

 Just like with logit, here we have similar 
tests for ’goodness of fit

 Use the LR χ² statistic (& p-value) to test if 
all coefficients in the model ≠ 0

 You can test nested models (omitted 
variables) with the LR test

 Can use a Chow test to check for structural 
breaks (sub-groups)



Note!

 In small samples, (say under 50 or so), you 
will often violate the Proportional/paralell 
odds assumption because outlying 
obesrvations will have a large impact on the 
model

 In this case, the estimates will be biased.

 To remedy this, you can use 
GENERALIZED LEAST SQUARES  
estimates



MULTINOMIAL LOGIT



Multinomial Logit

 Similar to ordered logit, when our DV takes on 2+ values, but still 
limited – 3, 4, 5 categories for example.

 Unlike ordered logit, the categories of the DV are ’not ordered’, but 
are nominal categories (aka ’categorical’).

 We are interested in the relative probability of these outcomes using 
a common set of parameters (IV’s)

 For example - given a set of IV’s (education, country/regional 
origin, parent’s income, rural/urban) we might want to know the 
following:

 Choice of a foreign language – English, Spanish, Chinese, Swedish

 Choice of drink: coffee, Coke, juice, wine

 Choice of occupation – police, teacher, or health care worker

 Mode of transportation – car, bus, tram, train

 Voting for a party or bloc – R-G, Alliansen or S.D.



Assumptions of ’mlogit’  

models
 A common set of parameters (IV’s) can linearly predict 

probabilities of DV categorical outcomes, but do not assume 
error term is constant across Y outcomes.

 Unlike Ologit, these IV’s are CASE SPECIFIC – have 
independent effects on each category of the DV (e.g. different 
Betas across categories – no ’parallel odds assumption’).

 ”Independence of Irrelevant Alternatives” (IIA, from Arrow’s 
’impossibility theorom) – the odds/probability of chosing one 
case of the DV over another does not depend on another’s 
presence or absence, ’irrelevant alternatives’ **strong 
assumption**

 **Multinomial logit is not appropriate if the assumption is 
violated.



Multinomial Logit 

Assumption 2 Examples
 IIA Example 1: Voting for certain parties

 **For ex., the probabilities of someone S, V, L, M, KD or, 
S.D. vs. M does not change if MP is added or taken away

◦ Is IIA assumption likely met in this election model?

◦ Probably not. If MP were removed, those voters would likely 
vote for V or S.
 Removal of MP would increase likleyhood for S or V relative to M

 IIA Example 2:  Consumer Preferences

◦ Options:  coffee, juice, wine, Coke
 Might meet IIA assumption

◦ Options:  coffee, juice, Coke, Pepsi
 Won’t meet IIA assumption.  Coke & Pepsi are very similar –

substitutable.  

 Removal of Pepsi will drastically change odds ratios for coke vs. others.



Long and Freese (2006):

 “Multinomial and conditional logit models 
should only be used in cases where the 
alternatives “can plausibly be assumed to be 
distinct and weighed independently in the 
eyes of the decision-maker.”

 Categories should be “distinct alternatives”, 
not substitutes.  Theory & argument very 
important

 Note:  There are some formal tests for 
violation of IIA.  But they don’t always work 
well.  Be cautious of them.



Diagnositics with MLogit

 Again, like logit (and ologit), we test the 

signficance of the full model with the χ²

statistic, and ’improvements’ (or omitted/ 

irellevant variables) with an LR test using 

the log likelihood ratios.

 Again, Pseudeo-R2 is meaningless by 

itself – only compared to other models 

with the same sample. BUT, the higher, 

the better.



EVENT COUNT 
MODELS



Description

 Again, we determine the use of an Event Count 
model by the structure of our DV

 So far, we’ve looked at variables that have normal 
and binary distributions (OLS, and Logit).  We’ll 
now consider a 3rd type, ’Gamma’ distributions

 In this case, the DV is:

 a FIXED number of outcomes & NOT binary

 For ex., can be units of time (days, years, etc), 
units in fixed time (individual or geographic unit)

 Ordinal (more later if your DV is continuous)

 Positive (but can take ’0’)



Some examples

 Number of new political parties entering parliament in a given 
election year

 The number of political protests or coup d’Etats in a country-year

 Number of presidential vetos in a year or mandate period

 Number of children in a household

 Number of vaccinations a child gets in a year, or doctor visits an 
adult makes

 Number of civic organizations an individual joins or is a member of 
in a given year.



Key characteristics of 

’Event Data’ – 1 
 The count of events is non-negative 

 are independent of one another

 Counts must be integers (e.g. discrete) – cannot be 
2.2, 3.7 but 2 or 4.

 Can have 1-parameter (λ) distribution (mean=VAR)

 Using a histogram, we see that the distribution of Yi 
outcomes is usually large in 0 or 1, and diminishes 
rapidly from the 2nd or 3rd outcome on

 The distribution is thus NOT normal (’Gausian’)– it is 
a ’gamma distribution: for count data we use these 
models:

 1.Poisson 

 2. negativel binomal



Key characteristics of 

’Event Data’ – 2
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Poisson Models: 

Assumptions & workings
 Like logit, estimates with Maximum Likelihood estimation (MLE), 

which finds the value of the parameter that fits the model ’best’ (log 
likelihood)

 Our ”link function” in this case is Lambda – λ

 Goals are to: 

 1) estimate the increase Pr(Y=n) for a unit change in X. In Poisson 
regression, the model expresses the log outcome rate as a linear 
function of a set of predictors.  (like Logit, β’s need to be 
transformed for interpretation)

 2) predict the expected count-outcome (group) for an observation 
(like ologit).  But because of our DV distribution, the normal/logit 
curve can’t be used, thus the Gamma distribution fills this gap.



Why better than OLS??

 OLS will produce a linear estimate of the relationship 
between βX and Y that will be less than 0 and greater 
than our highest count (unrealistic predictions).  

 OLS assumes the difference is the same between all 
counts in Y (0 to 1 is the same as 3 to 4), like Ologit, 
Poisson does not.

 we will almost always have heteroskadasticity (as 
there will probably be more VAR in Y-outcomes with 
more observations)

 error term is not normally distributed



The Poisson distribution

 Pr 𝑌𝑖 = k =
𝜆𝑘𝑒−𝜆

𝑘!

 𝜆 is calculated as the 
mean of Yi

 𝑒−𝜆 is equal to the 
exponent inverse of
Lambda

 K is the number of
outcomes in Y

 K! is the factorial of K 
(ex. 4! = 4 × 3 × 2 × 1 
= 24)

 𝝀 is the expected value 
of Yi (mean of DV) 
and also its variance:

So:

𝜆= E(Y) = Var(Y)

Notice when 𝜆 =1 the CDF is highly

concentrated between 0 and 10, as 

Lamda increases, what does the CDF 

look like?

//upload.wikimedia.org/wikipedia/commons/7/7c/Poisson_cdf.svg


Poisson distributions at 

different levels of Lambda 

– 1  
 λ is equal to rate of the event (DV)

 So, if the mean of the distribution (λ) is high 
enough, than OLS is ok. So we can generate 
Pr(Y=n|Xi) in a similar way as a normal 
curve – e.g. Mean approaches 10

 BUT the data we will discuss will have a 
mean closer to about 1 or less

 3 examples with K=20 & λ=1, 4 & 10



Poisson distributions at 

different levels of Lambda 

– 2

http://www.google.se/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=S2q-sZCTPEJYCM&tbnid=17A-lJqNWyIpiM:&ved=0CAUQjRw&url=http://resources.esri.com/help/9.3/ArcGISDesktop/com/Gp_ToolRef/process_simulations_sensitivity_analysis_and_error_analysis_modeling/distributions_for_assigning_random_values.htm&ei=u9UPUaiIEYnMswag7oGwAg&bvm=bv.41867550,d.Yms&psig=AFQjCNEKOegymSoUGCpf3D7789EoWVbzcw&ust=1360077892272318


Important assumptions of 

a Poisson Model
 The observations are assumed to be independent of one another

 Logarithm of rate changes in the DV are expressed linearly with 
equal increment increases in the IV’s

 ”Equidispersion” – e.g., the mean of the DV = the Variance 
(although this does not happen that very often).   

 Breaking this is called ”overdispearsion” – when VAR in our data is 
greater than the model assumes.  If violated, we can’t use Poisson 
for hypothesis testing.

 **If outcome cases of Y are not independent, then we will mostly 
likely see ”overdispersion” – which if large enough, will lead us to 
use a Negative Binomial model (more later…)



Overdispersion: Causes & 

Consequences
 Possible causes:

1. a poorly fitted model

◦ Omited variables

◦ Outliers

◦ Wrong functional form of 1+ of our IV’s in the model

◦ Unaccounted heteroskadescticity from structural breaks.

2. 𝑉𝐴𝑅(𝑌𝑖) > 𝜇𝑖 (variance of our data greater than the mean)

-very common with individual level data!

 Consequences:

◦ Underestimated SE’s (think opposite effect of multicollinearity)

◦ Overstimated p-values & poor prediections



Important extra model 

test in Poisson
 Before going on to interpret the model’s Betas, we 

need to know whether we’ve ’chosen correctly’ 
with Poisson – does the Poisson estimation form 
fit our data??  E.g. is the Gamma distribution 
appropriate?  

 Otherwise, we might consider ologit

 A ’goodness of fit’ test (χ²) will let us know if we 
have a problem from – the H0 is the the model’s 
form DOES fit our data, a rejection of H0 means 
that Poisson might be the WRONG estimation.

 Other reasons for rejection would be omitted IV’s 
or incorrect functional forms



Time to interpret
 Like logit, the Betas are basically

meaningless, but - Poisson can give
us Odds ratio (IRR), or ’incident 
rate ratio’ = exponentiated Betas 
(like logit)



𝜆|𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚=𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝜆|𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚=𝑔𝑒𝑛𝑒𝑟𝑎𝑙
=

exp( መ𝛽𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

=exp(1.08) = 2.95

 Ex., holding math score constant, a 
student in an academic program 
(compared with general) has 2.95 
times the incident rate 

 Also, we see that for every increase
in one unit in a math score (e.g. 
’1’), the percent change in the 
incident rate increases by 7%, 
holding program constant

obs 200

wald Chi2 80.15

pr>Chi2 0.000

Psuedo R2 0.2118

no. of Awards Beta robsut s.e. IRR

program (comparison=general)

academic 1.08 0.32 2.956

vocational 0.369 0.401 1.447

math score 0.07 0.01 1.07

const. -5.24 0.65



Negative Binomial Models 

(NBM) – 1 
 Are also ”count” models for limited DV’s, very similar to Poisson 

in both assumptions and interpretation

 Uses a version of Lambda as a link function to estimate Pr(Y) as 
well

 Key difference from Poisson is that the Var(Y) is assumed to be 
larger than the Mean(Y) (e.g. ’overdispersion’).

 Also, if we cannot assume that the outcomes of Y are independent 
from one another, than a NBM might be more appropriate

 A matter of efficiency: we prefer Poisson becasue of greater 
efficiency, but there is a clear solution when we violate key model 
assumptions, so we take NBM instead.



Negative Binomial Models 

(NBM) – 2
 Like Poisson, the NBM assumes constant variance

in Y, which is estimated by maximum likelihood
as:

 Var(Y) = λ+λ𝟐/𝛂
 𝜶 = the ’dispearsion parameter’ (set at ’0’ in 

Poisson), so instead of one parameter being
estimated, there are 2 (which is why less 
’efficient’)

 Uses logged Betas, so like logit (& Poisson) can
use Odds ratios

 So, NBM’s are basically a more general type of
Poisson model.  



Key differences

 Because of the quadradic function in the 
assumed Var(Y), they are LESS EFFICIENT 
– Poisson will produce SMALLER s.e.’s for 
beta estimates, in med-large samples, the 
estimates are consistant (not-biased) 
however.

 Following, NBM’s will result in larger 
expected probabilities for smaller counts 
(e.g. # of Yi outcomes) compared with 
Poisson

 NBM’s will have slightly larger probabilities 
for larger counts 



Example:  common 

Poisson vs. Negative 

binomial distributions
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NBM vs. Poisson for our 

example

Negative Binomial Poisson

DV=Absences beta s.e. beta s.e.

math -0.0045 0.0025 -0.0049 0.0016

Baseline=general

Academic -0.558 0.192 -0.554 0.109

Vocational -0.956 0.199 -0.958 0.120

constant 1.85 0.212 1.87 0.121

See how close the Betas are?

This shows that Poisson is still a consistent estimator, dispite 

overdispersion

However, what is the difference here?

Yes, s.e.’s considerably larger in NBM, leads to higher Z-scores 

in Poisson and maybe greater type-1 error



REVIEW



Summary review
 Sometimes, our DV’s will have a limited distribution: 0/1, 0-4, 1-5, categorical responses, 

etc.

 This results in many problems for OLS, such as heterogeneity of the error term, which 
gives biased and and unrealistic estimation for our betas.

 Like in OLS, we want to make predictions about Pr(Y) given values of Xi, etc., but we 
need to transform our Y’s to probabilities, odds, etc. using LINK FUNCTIONS.

 For binary variables, our link functions can be logit or probit.  Same for ordinal or 
categorical data.  

 For count data, we take advantage of gamma distributions, and use Lamba as our link 
function (for Poission and NBM)

 Remember, none of the betas produced make intuative sense, and thus they need to be 
transformed (odds, pr, etc.)  margins.

 Also, the choice of any of these models is based on your Dep. Variable!!



QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!


