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Four Types of Scales

 mutually exclusive categories with no 

logical order.

 mutually exclusive categories with logical 

rank order.

 ordered data with equal distance between 

each point (no absolute zero).

 ordered data with equal distance between 

each point (with a “true” zero).



Definition

 The ordered multinomial logistic model 

enables us to model ordinally scaled 

dependent variables with one or more 

independent variables.

 These IV(s) can take many different forms 

(ie. real numbers values, integers, 

categorical, binomial, etc.).



Does this Occur Much?

 “Ordinal data are the most frequently encountered type of data in 
the social sciences” (Johnson & Albert, 1999, p. 126).  

 Examples

◦ Yes, maybe, no

◦ Likert scale (Strongly Agree – Strongly Disagree)

◦ Always, frequently, sometimes, rarely, never

◦ No hs diploma, hs diploma, some college, bachelor’s degree, master’s 
degree, doctoral degree

◦ Free school lunch, reduced school lunch, full price lunch

◦ 0-10k per year, 10-20K per year, 20-30K per year, 30 – 60K per year, > 
60K per year

◦ Low, medium, high

◦ Basic math, regular math, pre-AP math, AP math

◦ Nele’s dancing ability, Meg’s dancing ability, Saralyn’s dancing ability, 
Jose’s dancing ability, Kyle’s dancing ability, Braden’s dancing ability, a 
rock



ORDERED AND 
MULTINOMIAL LOGIT/ 
PROBIT



What is this for?

 extension of the logistic regresion model for binary 
response

 when your DV has multiple, ordered categories.

Examples:

 Bond ratings (AAA, AA, A, etc.), 

 Grades (MVG, VG, G, etc.), 

 opinion surveys (strongly agree, agree, disagree, 
strongly disagree) 

 Some type of continuous outcome you might want to 
collapse - spending, ’performance’ (high, medium, 
low)

 Employment (fully, partial, unemploymed)



Assumptions of Ordered 

Logit Models – 1 

 Maximum likelihood estimation – again, 

no ’sum of squares’ estimation – this uses 

an iterative process that converges the 

model’s log likelihood in comparison to 

an ’empty model’ (Iteration 0)



Assumptions of Ordered 

Logit Models – 2 

 Number of ordered responses <6.  After 

the DV takes on 6+ values, the model can 

be run using OLS if distance between 

categories equal.



Assumptions of Ordered 

Logit Models – 3 

 Proportional odds assumption (aka 

parallel regression): β’s for one outcome 

group (low Bond rating countries) are the 

same as any other group (median, or high 

Bond rating states) – is an assumption to 

increase efficiancy in our estimates. 



Note!

 we do NOT need to assume the distance 

between each interval in Y is the same! 

(as we would if using OLS)



Our algorithm

 we start with an observed, ordinal variable (Y)

 as in most models of estimation, Y is a function of 
a latent, unobserved variable Y*

 the variable Y* has ”threshold points” (’M’)– the 
value of Y depends on whether an observation has 
crossed these thresholds.  If Y has 3 groups, then 2 
cut-offs:

 𝑌𝑖 = 1 if 𝑌𝑖 * is ≤ 𝑀1

 𝑌𝑖 = 2 if 𝑀1 is ≤ 𝑌𝑖* ≤ 𝑀2

 𝑌𝑖 = 3 if 𝑌𝑖 * is ≥ 𝑀2



Estimating the model
 So, as in all statistical models we’ve covered, our latent variable Y* is a 

function of our right-hand side IV’s plus some level of error:

𝑌∗
𝑖
= 

𝑘=1

𝑘

𝛽𝑘𝑋𝑘𝑖 + 𝜀𝑖 = 𝑍𝑖 +𝜀𝑖

 Our model will estimate part of this:

𝑍𝑖 = 

𝑘=1

𝑘

𝛽𝑘𝑋𝑘𝑖 = 𝐸 𝑌∗
𝑖

 So Z, basically is Y* as a function of some disturbance (not a perfect 
measure of Y*).  It is of a different scale than Y (e.g. continuous), but our 
estimates can give us Pr(Y=1, 2,..X) based on the value of Z.

 Like binary Logit, our link function is the log of the odds (logit), giving us
odds/probability that an observation falls into a given Y category based on 
its levels of X’s.  Just like the probit and logit models, Z is continuous 0-1.



Important!

 There is no ’traditional’ intercept, just 

’cut-off points’ (M) (like an intercept) & 

that they are different for each level of Y, 

but Beta’s do NOT vary for the levels of 

Y!



The point

 We want to estimate the probability that Y 
(observed variable) will take on a given value (in 
this case, 1, 2 or 3).  

 Z helps us estimate the probability that a given 
observation will fall into a given Y category

 𝑃 𝑌 = 1 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1

 𝑃 𝑌 = 2 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
−

1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1

 𝑃 𝑌 = 3 = 1 −
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2



Important!

 So with the estimate value of Z and the 

assumed logistic distribution of the error 

term, we can estimate the probability that 

an observation will fall into one of the 

categories of Y.



Example – 1 

 The data set contains variables on 200 

students. The outcome variable is prog, 

program type. The predictor variables are 

social economic status, ses, a three-level 

categorical variable and writing score, 

write, a continuous variable.



Example – 2 



Example – 3 

sum  ses science socst female 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         ses |       200       2.055    .7242914          1          3 

     science |       200       51.85    9.900891         26         74 

       socst |       200      52.405    10.73579         26         71 

      female |       200        .545    .4992205          0          1 



Example – 4

 Let’s say we want to estimate ’socio-

economic stats’ (SES) as a function of test 

scores and gender

 𝑆𝐸𝑆𝑖=∝𝑘−1 +𝛽 𝑠𝑐𝑖𝑒𝑛𝑐𝑒 +
𝛽 𝑠𝑜𝑐𝑖𝑎𝑙𝑠𝑡𝑢𝑑𝑖𝑒𝑠 + 𝛽 𝑓𝑒𝑚𝑎𝑙𝑒 + 𝜖𝑖

 We have 200 obs in our data – let’s see

how the summary stats look:



Example – 5

 We see that higher science & social 

science scores lead to higher SES & that 

females, on average, have lower SES



Example – 6

 Coefficients are pretty meaningless, so, 

let’s calculate the PR(Y=1, 2 and 3) for a 

female who got average test score on both 

tests.



Getting our ”thresholds” 

 G1 (low SES): < 2.75

 >2.75 G2 (med. SES) <5.10

 G3 (high SES): >5.10



Example – 7
 Calculating ’Zi’ for a female with average test scores (from ’sum’) & our

Beta estimates from the last slide:

 Zi = (0.03*51.85(science) + 0.0532*52.405(soc. Sci) –
0.4824*1(female)

 Zi = 3.86

 𝑃 𝑌 = 1 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1
= 

1

1+exp(3.86−2.755)
= .249

 𝑃 𝑌 = 2 =
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
−

1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀1
= 

1

1+exp(3.86−5.105)
−

1

1+exp(3.86−2.755)
= .528

 𝑃 𝑌 = 3 = 1 −
1

1+𝑒𝑥𝑝 𝑍𝑖−𝑀2
= 1 −

1

1+exp(3.86−5.105)
= .223

 **Total should add up to 1**



Example – 8

 So, a female with average test scores has a 

24.9%, 52.8% and 22.3% probability of 

being in the low, medium and high levels 

of SES respectively!



Model diagnostics

 Just like with logit, here we have similar 
tests for ’goodness of fit

 Use the LR χ² statistic (& p-value) to test if 
all coefficients in the model ≠ 0

 You can test nested models (omitted 
variables) with the LR test

 Can use a Chow test to check for structural 
breaks (sub-groups)



Note!

 In small samples, (say under 50 or so), you 
will often violate the Proportional/paralell 
odds assumption because outlying 
obesrvations will have a large impact on the 
model

 In this case, the estimates will be biased.

 To remedy this, you can use 
GENERALIZED LEAST SQUARES  
estimates



MULTINOMIAL LOGIT



Multinomial Logit

 Similar to ordered logit, when our DV takes on 2+ values, but still 
limited – 3, 4, 5 categories for example.

 Unlike ordered logit, the categories of the DV are ’not ordered’, but 
are nominal categories (aka ’categorical’).

 We are interested in the relative probability of these outcomes using 
a common set of parameters (IV’s)

 For example - given a set of IV’s (education, country/regional 
origin, parent’s income, rural/urban) we might want to know the 
following:

 Choice of a foreign language – English, Spanish, Chinese, Swedish

 Choice of drink: coffee, Coke, juice, wine

 Choice of occupation – police, teacher, or health care worker

 Mode of transportation – car, bus, tram, train

 Voting for a party or bloc – R-G, Alliansen or S.D.



Assumptions of ’mlogit’  

models
 A common set of parameters (IV’s) can linearly predict 

probabilities of DV categorical outcomes, but do not assume 
error term is constant across Y outcomes.

 Unlike Ologit, these IV’s are CASE SPECIFIC – have 
independent effects on each category of the DV (e.g. different 
Betas across categories – no ’parallel odds assumption’).

 ”Independence of Irrelevant Alternatives” (IIA, from Arrow’s 
’impossibility theorom) – the odds/probability of chosing one 
case of the DV over another does not depend on another’s 
presence or absence, ’irrelevant alternatives’ **strong 
assumption**

 **Multinomial logit is not appropriate if the assumption is 
violated.



Multinomial Logit 

Assumption 2 Examples
 IIA Example 1: Voting for certain parties

 **For ex., the probabilities of someone S, V, L, M, KD or, 
S.D. vs. M does not change if MP is added or taken away

◦ Is IIA assumption likely met in this election model?

◦ Probably not. If MP were removed, those voters would likely 
vote for V or S.
 Removal of MP would increase likleyhood for S or V relative to M

 IIA Example 2:  Consumer Preferences

◦ Options:  coffee, juice, wine, Coke
 Might meet IIA assumption

◦ Options:  coffee, juice, Coke, Pepsi
 Won’t meet IIA assumption.  Coke & Pepsi are very similar –

substitutable.  

 Removal of Pepsi will drastically change odds ratios for coke vs. others.



Long and Freese (2006):

 “Multinomial and conditional logit models 
should only be used in cases where the 
alternatives “can plausibly be assumed to be 
distinct and weighed independently in the 
eyes of the decision-maker.”

 Categories should be “distinct alternatives”, 
not substitutes.  Theory & argument very 
important

 Note:  There are some formal tests for 
violation of IIA.  But they don’t always work 
well.  Be cautious of them.



Diagnositics with MLogit

 Again, like logit (and ologit), we test the 

signficance of the full model with the χ²

statistic, and ’improvements’ (or omitted/ 

irellevant variables) with an LR test using 

the log likelihood ratios.

 Again, Pseudeo-R2 is meaningless by 

itself – only compared to other models 

with the same sample. BUT, the higher, 

the better.



EVENT COUNT 
MODELS



Description

 Again, we determine the use of an Event Count 
model by the structure of our DV

 So far, we’ve looked at variables that have normal 
and binary distributions (OLS, and Logit).  We’ll 
now consider a 3rd type, ’Gamma’ distributions

 In this case, the DV is:

 a FIXED number of outcomes & NOT binary

 For ex., can be units of time (days, years, etc), 
units in fixed time (individual or geographic unit)

 Ordinal (more later if your DV is continuous)

 Positive (but can take ’0’)



Some examples

 Number of new political parties entering parliament in a given 
election year

 The number of political protests or coup d’Etats in a country-year

 Number of presidential vetos in a year or mandate period

 Number of children in a household

 Number of vaccinations a child gets in a year, or doctor visits an 
adult makes

 Number of civic organizations an individual joins or is a member of 
in a given year.



Key characteristics of 

’Event Data’ – 1 
 The count of events is non-negative 

 are independent of one another

 Counts must be integers (e.g. discrete) – cannot be 
2.2, 3.7 but 2 or 4.

 Can have 1-parameter (λ) distribution (mean=VAR)

 Using a histogram, we see that the distribution of Yi 
outcomes is usually large in 0 or 1, and diminishes 
rapidly from the 2nd or 3rd outcome on

 The distribution is thus NOT normal (’Gausian’)– it is 
a ’gamma distribution: for count data we use these 
models:

 1.Poisson 

 2. negativel binomal



Key characteristics of 

’Event Data’ – 2
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Poisson Models: 

Assumptions & workings
 Like logit, estimates with Maximum Likelihood estimation (MLE), 

which finds the value of the parameter that fits the model ’best’ (log 
likelihood)

 Our ”link function” in this case is Lambda – λ

 Goals are to: 

 1) estimate the increase Pr(Y=n) for a unit change in X. In Poisson 
regression, the model expresses the log outcome rate as a linear 
function of a set of predictors.  (like Logit, β’s need to be 
transformed for interpretation)

 2) predict the expected count-outcome (group) for an observation 
(like ologit).  But because of our DV distribution, the normal/logit 
curve can’t be used, thus the Gamma distribution fills this gap.



Why better than OLS??

 OLS will produce a linear estimate of the relationship 
between βX and Y that will be less than 0 and greater 
than our highest count (unrealistic predictions).  

 OLS assumes the difference is the same between all 
counts in Y (0 to 1 is the same as 3 to 4), like Ologit, 
Poisson does not.

 we will almost always have heteroskadasticity (as 
there will probably be more VAR in Y-outcomes with 
more observations)

 error term is not normally distributed



The Poisson distribution

 Pr 𝑌𝑖 = k =
𝜆𝑘𝑒−𝜆

𝑘!

 𝜆 is calculated as the 
mean of Yi

 𝑒−𝜆 is equal to the 
exponent inverse of
Lambda

 K is the number of
outcomes in Y

 K! is the factorial of K 
(ex. 4! = 4 × 3 × 2 × 1 
= 24)

 𝝀 is the expected value 
of Yi (mean of DV) 
and also its variance:

So:

𝜆= E(Y) = Var(Y)

Notice when 𝜆 =1 the CDF is highly

concentrated between 0 and 10, as 

Lamda increases, what does the CDF 

look like?

//upload.wikimedia.org/wikipedia/commons/7/7c/Poisson_cdf.svg


Poisson distributions at 

different levels of Lambda 

– 1  
 λ is equal to rate of the event (DV)

 So, if the mean of the distribution (λ) is high 
enough, than OLS is ok. So we can generate 
Pr(Y=n|Xi) in a similar way as a normal 
curve – e.g. Mean approaches 10

 BUT the data we will discuss will have a 
mean closer to about 1 or less

 3 examples with K=20 & λ=1, 4 & 10



Poisson distributions at 

different levels of Lambda 

– 2

http://www.google.se/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=S2q-sZCTPEJYCM&tbnid=17A-lJqNWyIpiM:&ved=0CAUQjRw&url=http://resources.esri.com/help/9.3/ArcGISDesktop/com/Gp_ToolRef/process_simulations_sensitivity_analysis_and_error_analysis_modeling/distributions_for_assigning_random_values.htm&ei=u9UPUaiIEYnMswag7oGwAg&bvm=bv.41867550,d.Yms&psig=AFQjCNEKOegymSoUGCpf3D7789EoWVbzcw&ust=1360077892272318


Important assumptions of 

a Poisson Model
 The observations are assumed to be independent of one another

 Logarithm of rate changes in the DV are expressed linearly with 
equal increment increases in the IV’s

 ”Equidispersion” – e.g., the mean of the DV = the Variance 
(although this does not happen that very often).   

 Breaking this is called ”overdispearsion” – when VAR in our data is 
greater than the model assumes.  If violated, we can’t use Poisson 
for hypothesis testing.

 **If outcome cases of Y are not independent, then we will mostly 
likely see ”overdispersion” – which if large enough, will lead us to 
use a Negative Binomial model (more later…)



Overdispersion: Causes & 

Consequences
 Possible causes:

1. a poorly fitted model

◦ Omited variables

◦ Outliers

◦ Wrong functional form of 1+ of our IV’s in the model

◦ Unaccounted heteroskadescticity from structural breaks.

2. 𝑉𝐴𝑅(𝑌𝑖) > 𝜇𝑖 (variance of our data greater than the mean)

-very common with individual level data!

 Consequences:

◦ Underestimated SE’s (think opposite effect of multicollinearity)

◦ Overstimated p-values & poor prediections



Important extra model 

test in Poisson
 Before going on to interpret the model’s Betas, we 

need to know whether we’ve ’chosen correctly’ 
with Poisson – does the Poisson estimation form 
fit our data??  E.g. is the Gamma distribution 
appropriate?  

 Otherwise, we might consider ologit

 A ’goodness of fit’ test (χ²) will let us know if we 
have a problem from – the H0 is the the model’s 
form DOES fit our data, a rejection of H0 means 
that Poisson might be the WRONG estimation.

 Other reasons for rejection would be omitted IV’s 
or incorrect functional forms



Time to interpret
 Like logit, the Betas are basically

meaningless, but - Poisson can give
us Odds ratio (IRR), or ’incident 
rate ratio’ = exponentiated Betas 
(like logit)



𝜆|𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚=𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝜆|𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚=𝑔𝑒𝑛𝑒𝑟𝑎𝑙
=

exp( መ𝛽𝑋𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

=exp(1.08) = 2.95

 Ex., holding math score constant, a 
student in an academic program 
(compared with general) has 2.95 
times the incident rate 

 Also, we see that for every increase
in one unit in a math score (e.g. 
’1’), the percent change in the 
incident rate increases by 7%, 
holding program constant

obs 200

wald Chi2 80.15

pr>Chi2 0.000

Psuedo R2 0.2118

no. of Awards Beta robsut s.e. IRR

program (comparison=general)

academic 1.08 0.32 2.956

vocational 0.369 0.401 1.447

math score 0.07 0.01 1.07

const. -5.24 0.65



Negative Binomial Models 

(NBM) – 1 
 Are also ”count” models for limited DV’s, very similar to Poisson 

in both assumptions and interpretation

 Uses a version of Lambda as a link function to estimate Pr(Y) as 
well

 Key difference from Poisson is that the Var(Y) is assumed to be 
larger than the Mean(Y) (e.g. ’overdispersion’).

 Also, if we cannot assume that the outcomes of Y are independent 
from one another, than a NBM might be more appropriate

 A matter of efficiency: we prefer Poisson becasue of greater 
efficiency, but there is a clear solution when we violate key model 
assumptions, so we take NBM instead.



Negative Binomial Models 

(NBM) – 2
 Like Poisson, the NBM assumes constant variance

in Y, which is estimated by maximum likelihood
as:

 Var(Y) = λ+λ𝟐/𝛂
 𝜶 = the ’dispearsion parameter’ (set at ’0’ in 

Poisson), so instead of one parameter being
estimated, there are 2 (which is why less 
’efficient’)

 Uses logged Betas, so like logit (& Poisson) can
use Odds ratios

 So, NBM’s are basically a more general type of
Poisson model.  



Key differences

 Because of the quadradic function in the 
assumed Var(Y), they are LESS EFFICIENT 
– Poisson will produce SMALLER s.e.’s for 
beta estimates, in med-large samples, the 
estimates are consistant (not-biased) 
however.

 Following, NBM’s will result in larger 
expected probabilities for smaller counts 
(e.g. # of Yi outcomes) compared with 
Poisson

 NBM’s will have slightly larger probabilities 
for larger counts 



Example:  common 

Poisson vs. Negative 

binomial distributions
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NBM vs. Poisson for our 

example

Negative Binomial Poisson

DV=Absences beta s.e. beta s.e.

math -0.0045 0.0025 -0.0049 0.0016

Baseline=general

Academic -0.558 0.192 -0.554 0.109

Vocational -0.956 0.199 -0.958 0.120

constant 1.85 0.212 1.87 0.121

See how close the Betas are?

This shows that Poisson is still a consistent estimator, dispite 

overdispersion

However, what is the difference here?

Yes, s.e.’s considerably larger in NBM, leads to higher Z-scores 

in Poisson and maybe greater type-1 error



REVIEW



Summary review
 Sometimes, our DV’s will have a limited distribution: 0/1, 0-4, 1-5, categorical responses, 

etc.

 This results in many problems for OLS, such as heterogeneity of the error term, which 
gives biased and and unrealistic estimation for our betas.

 Like in OLS, we want to make predictions about Pr(Y) given values of Xi, etc., but we 
need to transform our Y’s to probabilities, odds, etc. using LINK FUNCTIONS.

 For binary variables, our link functions can be logit or probit.  Same for ordinal or 
categorical data.  

 For count data, we take advantage of gamma distributions, and use Lamba as our link 
function (for Poission and NBM)

 Remember, none of the betas produced make intuative sense, and thus they need to be 
transformed (odds, pr, etc.)  margins.

 Also, the choice of any of these models is based on your Dep. Variable!!



QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!


