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DEPENDENT 
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Binary Dependent 

Variables - 1

 We have worked extensively 

with regression models in which Y 

is continuous.

◦ We have predicted the effect of education and 

experience on earnings.

◦ We have predicted the effect of exogenous 

changes in price on 

quantity demanded.



Binary Dependent 

Variables – 2

 However, our methods are 

inappropriate when the dependent 

variable takes on just a few discrete 

values.

◦ For example, we may be interested in 

the effect of a brand’s advertising on 

consumers’ decisions to buy that brand.



Why Do We Need A Different 

Model  Than Linear Regression?

Appropriate estimation of relations between variables 
depends on selecting an appropriate statistical model. 
There are many different types of estimation problems 
in political science.

 Continuous variables where the experiment can be 
viewed as draws from a normal distribution.

 Continuous Variables where the distribution is 
truncated or censored.

 Discrete Variables - for example, we might model 
labor force participation, whether to vote for or 
against, purchase or not purchase, run for office or 
not run for office, etc.



Type of Qualitative 

Response Models
◦ Qualitative dichotomy (e.g., vote/not vote type variables)-

We equate "no" with zero and "yes" with 1.  However, these 
are qualitative choices and the coding of 0-1 is arbitrary.  We 
could equally well code "no" as 1 and "yes" as zero. 

◦ Qualitative multichotomy (e.g., occupational choice by an 
individual)- Let 0 be a clerk, 1 an engineer, 2 an attorney, 3 a 
politician, 4 a college professor, and 5 other.  Here the 
codings are mere categories and the numbers have no real 
meaning.

◦ Rankings (e.g., opinions about a politician's job 
performance)- Strongly approve (5), approve (4), don't know 
(3), disapprove (2), strongly disapprove (1).  The values that 
are chosen are not quantitative, but merely an ordering of 
preferences or opinions.  The difference between outcomes is 
not necessarily the same from 5 to 4 as it is from 2 to 1.

◦ Count outcomes.



Binary Dependent 

Variables - 3

 Discrete-valued dependent variables are a 

special case that comes up sufficiently 

frequently to warrant its own special 

techniques.

 Here we will focus on dependent variables 

that can take on only 2 values, 0 or 1 

(dummy variables).



Example

Suppose we were to predict whether 

football teams win individual games, using 

the reported point spread from sports 

gambling authorities.



Example: model – 1

 Using the techniques we have developed 

so far, we might regress

 How would we interpret the 

coefficients and predicted values from 

such a model?

0 1

    where  indexes games
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Example: model - 2

Di
Win is either 0 or 1. It does not make 

sense to say that a 1 point increase in the 

spread increases Di
Win by b1. Di

Win can 

change only from 0 to 1 or from 1 to 0.

Instead of predicting Di
Win itself, we 

predict the probability that Di
Win = 1.

0 1

Win

i i iD Spread    



Binary Dependent Variables – 4

 It can make sense to say that a 1 point 

increase in the spread increases the 

probability of winning by 𝛽1. 

 Our predicted values of Di
Win are the 

probability of winning.

0 1

Win

i i iD Spread    



Binary Dependent 

Variables – 5

When we use a linear regression model to 

estimate probabilities, we call the model the 

linear probability model.

Di
Win  0 1Spreadi i



Problems with LPM 

Regression

 OLS in this case is called the Linear 

Probability Model 

 Running regression produces some 

problems

◦ Errors are not distributed normally

◦ Errors are heteroskedastic

◦ Predicted Ys can be outside the 0.0-1.0 bounds 

required for probability



What Point Spreads Say 

About the Probability of 

Winning in Football? 



Model charactersistics

 Note that the table reports White 

Robust Estimated Standard Errors.

 The Linear Probability Model 

disturbances are heteroskedastic.

 Heteroskedasticity is the only violation 

of the Gauss–Markov assumptions 

inherent in using dummy variables as Y.



Model analysis - 1

 The linear probability model works 

fine mathematically.

 However, it faces a serious drawback 

in interpretation.

 If the point spread is 21 points, the team’s 

predicted probability of 

winning is: 

0.5 - 0.025 • 21 = -0.025



Model analysis – 2 

 If X = 21, E(Y | X ) = -0.025

 We predict that the team has a -2.5% 

probability of victory.

 If X = -21, we predict that the team has a 

102.5% probability of victory.



For Some X-Values, E(D|Xi) > 1 

For Some Other Values E(D|Xi) < 0



Requirements

 Linear regression methods predict values 

between -∞ and +∞.

 Probabilities must fall between 0 and 1.

 The linear probability model cannot 

guarantee sensible predictions.



Translator

We want a translator such that:

◦ The closer to -∞ is the value from our linear 

regression model, the closer to 0 is our 

predicted probability.

◦ The closer to +∞ is the value from our linear 

regression model, the closer to 1 is our 

predicted probability.

◦ No predicted probabilities are less than 0 or 

greater than 1.



A Graph of Probability of 

Success and X



Questions

 How can we construct such a translator?

 How can we estimate it?



PROBIT/LOGIT 
MODELS



Probit/Logit Models

 In common practice, econometricians use 

THREE such “translators”:

◦ probit

◦ logit

◦ gompit

 The differences between these models 

are subtle.

 For present purposes there is no practical 

difference between the models.



Prepositions

 Notice that the slope varies dramatically.

 When the team is very - very likely or very - very 

unlikely to win, a small change in the point spread 

has very little impact.

 When the team’s chance of victory is 50/50, a 

small change in the point spread can lead to a large 

change in probabilities.



A Graph of Probability of 

Success and X



Structure of Probit/Logit

Models - 1

Both the Probit and Logit models have the 

same basic structure.

◦ Estimate a latent variable Z using a linear 

model. Z ranges from negative infinity to 

positive infinity.

◦ Use a non-linear function to transform Z into 

a predicted Y value between 0 and 1.



Structure of Probit/Logit 

Model – 2 
 Suppose there is some unobserved 

continuous variable Z that can take on 

values from negative infinity to infinity.

 The higher E(Z) is, the more probable it is 

that a team will win, or a student will 

graduate, or a consumer will purchase a 

particular brand.



Latent variable – 1 

We call an unobserved variable, Z, that we 

use for intermediate calculations, a latent 

variable.



Latent variable – 2 

 Z is a linear function of the explanators:

 Our goal is to estimate these 𝛽i’s.

0 1 1 2 2 ...i i K Ki iZ X X X         



Latent variable – 3 

 We will focus particularly on E(Z):

 It is convenient to consider the E(Z) 

separately from its stochastic component.

E(Z)  0 1X1i 2X2i  ...KXKi



Probit/Logit/Gompit

difference
The predicted probability of Y is a non-

linear function of E(Z).

◦ The probit model uses the standard normal 

cumulative density function.

◦ The logit model uses the logistic cumulative 

density function.

◦ The gompit model is based upon the CDF 

for the Type-I extreme value distribution. 

Note that this distribution is skewed.



Logistic Model

 We need a model that produces true 

probabilities

 The Logit, or cumulative logistic 

distribution offers one approach.

 This produces a sigmoid curve.

 Look at equation under 2 conditions:

◦ Xi = +∞

◦ Xi = -∞

0 1( )

1

1 i
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Y
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Sigmoid curve

http://en.wikipedia.org/wiki/Logistic_function


Probability Ratio

 Note that

 Where 

0 1i iZ X  
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Log Odds Ratio

 The logit is the log of the odds ratio, and 

is given by:

 This model gives us a coefficient that may 

be interpreted as a change in the weighted 

odds of the dependent variable

0 1ln
1
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Estimation of Model

 We estimate this with maximum 
likelihood

 The significance tests are z statistics

 We can generate a Pseudo R2 which is an 
attempt to measure the percent of 
variation of the underlying logit function 
explained by the independent variables

 We test the full model with the Likelihood 
Ratio test (LR), which has a χ2

distribution with k degrees of freedom



Probit

 If we can assume that the dependent 

variable is actually the result of an 

underlying (and immeasurable) propensity 

or utility, we can use the cumulative normal 

probability function to estimate a Probit 

model

 Also, more appropriate if the categories (or 

their propensities) are likely to be normally 

distributed

 It looks just like a logit model in practice



The Cumulative Normal 

Density Function

 The normal distribution is given by:

 The Cumulative Normal Density Function 

is:
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The Standard Normal CDF

 We assume that there is an underlying 

threshold value (Ii) that if the case exceeds 

will be a 1, and 0 otherwise.

 We can standardize and estimate this as

20 1 /21
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Probit estimates

Again, maximum likelihood 

estimation

Again, a Pseudo R2

Again, a LR ratio with k 

degrees of freedom



Assumptions of Models

 All Y’s are in {0,1} set

 They are statistically independent

 No multicollinearity

 The P(Yi=1) is normal density for probit, 

and logistic function for logit



Graph



Prediction

 To predict the Prob(Y) for a given 

X value, begin by calculating the 

fitted Z value from the predicted linear 

coefficients.

 For example, if there is only one explanator 

X:

0 1
ˆ ˆ( ) i iE Z Z X   



Graph-prediction – 1 



Probit/Logit Model 

prediction

 Then use the nonlinear function to 

translate the fitted Z value into 

a Prob(Y ):

ˆ( ) ( )Prob Y F Z



Graph-prediction – 2 



ESTIMATING A 
PROBIT/LOGIT 

MODEL



Estimating a Probit/Logit

Model

Each model is estimated using a statistical 

method called the method of maximum 

likelihood.



Estimating a Probit/Logit

Model – 2 

You must specify three elements:

◦ The dummy outcome variable (whether the 

football team actually won game i)

◦ The explanator/s (the football team’s point 

spread for game i)

◦ Which nonlinear function F(•) you wish to use 

(you specify F when you tell the computer 

whether to use logit or probit)



Estimating a Probit/Logit

Model – 2 

 The computer then calculates the 𝛽i’s 

that assigns the highest probability to the 

outcomes that were observed.

 The computer can calculate the 𝛽i’s for 

you. You must know how to interpret 

them.



Model estimation



Analysis of Probit/Logit

Model

 The estimated slope of the point spread is 

-0.1098

 A 1-point increase in the point spread 

decreases E(Z ) by 0.1098 units.

 How do we interpret the slope dZ/dX ?



Analysis: Statistical 

significance

You can still read statistical significance 

from the slope dZ/dX. The z-statistic 

reported for probit or logit is analogous to 

OLS’s t-statistic.



Analysis: Sign

 Sign: if dZ/dX is positive, then 
dProb(Y)/dX is also positive.

 The z-statistic on the point spread is -7.22, 
well exceeding the 5% critical value of 
1.96. The point spread is a statistically 
significant explanator of winning football 
games.

 The sign of the coefficient is negative. 
A higher point spread predicts a lower 
chance of winning.



Analysis: Magnitude

 the magnitude of dZ/dX has no 

particular interpretation. We care about 

the magnitude of dProb(Y)/dX.

 From the computer output for a 

probit/logit estimation, you can 

interpret the statistical significance and 

sign of each coefficient directly. 

Assessing magnitude is trickier.



Problems in Interpreting 

Magnitude

 The estimated coefficient relates X to 

Z. We care about the relationship 

between X and Prob(Y = 1).

 The effect of X on Prob(Y = 1) varies 

depending on Z.



First approach to 

assessing the magnitude

1. One approach is to predict 

Prob(Y ) for different values of X, 

to see how the probability changes 

as X changes.



Graph – 1 



But…

 the effect of a 1-unit change in X varies 

greatly, depending on the initial value 

of E(Z ).

 E(Z ) depends on the values of all 

explanators.



Graph – 2 



Example - 1

 For example, let’s consider the effect 

of 1 point change in the point spread 

at SPREAD = 5.88 points.

 Note: In this example, there is only 

one explanator, SPREAD. If we had 

other explanators, we would have to 

specify their values for this 

calculation, as well.



Example – 2 

 Step One: Calculate the E(Z ) values 

for X = 5.88 and X = 6.88, using the 

fitted values.

 Step Two: Plug the E(Z ) values into 

the formula for the logistic density 

function.



Example – 3 

(5.88) 0 0.1098 5.88 0.6456

(6.88) 0 0.1098 6.88 0.7554

ˆexp( )ˆ( )
ˆ1 exp( )

(0.7554) (0.6456) 0.6560 0.6804 0.0243.

Z

Z

Z
F Z

Z

F F

  

  




    

  

For the logit,   



Example - 4

 Changing the point spread from 5.88 to 

6.88 predicts a 2.4 percentage point 

decrease in the team’s chance of victory.

 Note that changing the point spread from 

8.88 to 9.88 predicts only a 2.1 

percentage point decrease.



Second approach to 

assessing the magnitude

1

1 1

ˆ( ) ( ) ˆ
ˆ ˆ

ˆ

ˆ

ˆ

ˆ

dProb Y dProb Y dZ dF

dX XdZ dZ

dF

dZ

Z

Z

Z

 

Unfortunately,  varies, depending

    on . However, a sample value can

    be calculated for a representative 

    value. Typically, we use the 

    calcu Xlated at the mean values for each .



But…

 Some econometrics software packages 

can calculate such “pseudo-slopes” for 

you.

 EViews does NOT have this function.



Example

The following table reports a probit on the 

probability of holding interest-bearing 

assets, as a function of total financial assets 

(LNFINAST) and dummy variables for 

having a pension (PENSION) or IRA 

(IRAS).



Example: Probit Estimates of The 

Probability of Holding Interest-Bearing 

Assets



Example: Analysis – 1 

 We can directly see that all three 

explanators are statistically significant 

(using the z-statistics).

 Also, all three explanators have positive 

coefficients. Increasing total financial 

assets, having a pension, and having an 

IRA all increase the probability of holding 

interest-bearing assets.



Example: Analysis – 2 

 To assess the magnitude of the coefficient 

on PENSION, we need to conduct a 

follow-up calculation.

 A reasonable calculation would be to 

predict Prob(Y ) when PENSION = 0 

and when PENSION = 1, holding the 

other explanators fixed at their sample 

means.



DERIVING 
PROBIT/LOGIT



Deriving Probit/Logit

 Where do the Logit and Probit estimators 

come from?

 How does the latent variable Z determine 

whether Y = 1 or Y = 0?

 What role do the     ‘s play?i



Assumptions for Y

0 1 1 ..

1 0

0 0

We assume  acts "as if" 

    determined by latent variable . 

 if 

 if 

i

i i K Ki i

i i

i i
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But…

 Note: the assumption that the breakpoint 

falls at 0 is arbitrary.

 β0 can adjust for whichever breakpoint 

you might choose to set.



Assumptions for residuals

 We assume we know the distribution 

of εi.

 In the probit model, we assume εi is 

distributed by the standard normal.

 In the logit model, we assume εi is 

distributed by the logistic.



Shocks – 1 

 The key to Probit/Logit: since we know 

the distribution of εi , we can calculate the 

probability that a given observation 

receives a shock εi that pushes Z into the 

Z > 0 or Z < 0 region.



Shocks – 2 

 Calculate

 Determine the regions of εi such that 

 Using the distribution of εi , calculate the 

probability of drawing an εi from each 

region.

E(Zi )  0 1X1i  ...KXKi

 E(Zi )i  0 or E(Zi )i  0



Example – 1 

( ) 1

-1 ( ) 0

( ) 0 1

( -1)
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Suppose 

If , then 

If , then 

For the standard normal distribution, 

what is the ?



Example – 2 

 For the standard normal distribution, 

Prob(εi > -1) ≈ 0.83

 If Zi = 1, we predict there is an 83% 

chance that Y = 1.



Example – 3 

 For another example, suppose we are 

estimating a probit and E(Zi) = -2. For 

what values of εi will Zi > 0 (so Y = 1)?

 If εi > 2, Zi > 0 (so Y = 1).

 For the standard normal distribution, 

Prob(εi) > 2  ≈ 0.025. We predict a 2.5% 

chance that Y = 1.



General solution – 1  

( ) ( )

( ) 1- ( )

1– ( ) (- )

More generally, suppose  has a 

cumulative density function 

That is, 

If  is symmetric, 
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General solution – 2

0 1 1

0 1 1

0 1 1

0 1 1
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           (for a symmetric distribution)
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REVIEW



Our wish

 Frequently econometricians wish to 

estimate the probability that a discrete 

event occurs.

 The Linear Probability Model: estimating 

a probability by using a 

linear model (e.g. OLS) with a dummy 

variable for Y.



Problems

Problems with the Linear Probability 

Model:

◦ OLS disturbances are heteroskedastic.

◦ OLS predictions range from - ∞ to + ∞. 

A probability needs to range from 0 to 1.



Solution

 Probit or Logit

 Assume a latent variable, Z, mediates 

between the explanators and the dummy 

variable Y.

 The higher Z is, the higher the probability 

that Y = 1. 



Model

 To predict the Prob(Y ) for a given 

X value, begin by calculating the 

fitted Z value from the predicted 

linear coefficients, for example:for only 

one explanator X :

 Then use the nonlinear function to 

translate the fitted Z value into 

a Prob(Y ):

0 1
ˆ ˆ( ) i iE Z Z X   

ˆ( ) ( )Prob Y F Z



Prediction graph



Problems in Interpreting 

Magnitude

◦The estimated coefficient relates 

X to Z. We care about the 

relationship between X and 

Prob(Y = 1).

◦The effect of X on Prob(Y = 1) 

varies depending on Z.



Latent variable

 

We assume Yi  acts "as if" 

    determined by latent variable Z. 

Zi  0  1X1i  .. KXKi i

Yi 1 if Zi  0

Yi  0 if Zi  0



Assumptions

 We assume we know the distribution 

of εi.

 In the probit model, we assume εi is 

distributed by the standard normal.

 In the logit model, we assume εi is 

distributed by the logistic.



General solution

0 1 1
ˆ ˆ ˆ( 1) ( .. )i i K KiProb Y F X X     

           (for a symmetric distribution)



QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!


