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MOTIVATION OF
QUANTILE
REGRESSION



Problems – 1 

 The conditional distribution 

of Y may not be unimodal.

 The distribution of Y, the 

“dependent” variable, conditional 

on the covariate X, may have thick 

tails.

 The conditional distribution of Y 

may be asymmetric.



Problems – 2

ANOVA and regression provide information only 
about the conditional mean.

Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

More knowledge about the distribution of the 
statistic may be important.

The covariates may shift not only the location or 
scale of the distribution, they may affect the 
shape as well.



Example: data

0

5

10

15

20

25

Five Treatments, 100 Patients

1 2 3 4 5

Raw Data
S

c
o
re

Treatment



Example: means with 

error bars



Example: quantiles
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Reasons to use quantiles 

rather than means

 Analysis of distribution rather than average

 Robustness

 Skewed data

 Interested in representative value

 Interested in tails of distribution

 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



QUANTILE
REGRESSION 
ESTIMATION



Quadratic loss function

yt = 1 + 2x2t + ... + kxkt + ut, 

 Ordinarily we specify a quadratic loss 

function: 

L(u) = Σu2

 Under quadratic loss we use the 

conditional mean, via regression or 

ANOVA, as our predictor of Y for a given 

X=x.



Quantile definition

 For a given p∈[0, 1] a pth quantile of a 

random variable Z is any number ζp such 

that 

Pr(Z< ζp ) ≤ p ≤ Pr(Z ≤ ζp ). 

 The solution always exists, but needs not 

be unique.

 Ex: Suppose Z={3, 4, 7, 9, 9, 11, 17, 21} 

and p=0.5 then

Pr(Z<9) = 3/8 ≤ 1/2 ≤ Pr(Z ≤ 9) = 5/8



Quantiles

Quantiles can be used to characterize a 

distribution:

oMedian

oInterquartile Range

oInterdecile Range

oSymmetry = (ζ.75- ζ.5)/(ζ.5- ζ.25)

oTail Weight = (ζ.90- ζ.10)/(ζ.75- ζ.25)



Quantile Function

 Cumulative Distribution 
Function

 Quantile Function

 Discrete step function
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Quantile

 Suppose Z is a continuous random 

variable with cumulative distribution 

function F(.), then 

Pr(Z<z) = Pr(Z≤z)=F(z) 

for every z in the support and a pth quantile

is any number ζp such that F(ζp) = p

 If F is continuous and strictly increasing 

then the inverse exists and ζp =F-1(p)



The asymmetric absolute 

loss function – 1 

 The asymmetric absolute loss function is 

where u is the prediction error we have 

made and I(u) is an indicator function of the 

sort
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Absolute Loss vs. 

Quadratic Loss
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The asymmetric absolute 

loss function – 2 

 Under the asymmetric absolute loss 

function Lp a best predictor of Y given 

X=x is a pth conditional quantile. 

 For example, if p=.5 then the best 

predictor is the median.

)x(p



Simple Quantile Regression – 1 

 A parametric quantile regression model is 
correctly specified if, for example,

 That is,            is a particular linear 
combination of the independent variable(s) 
such that

where F( ) is some univariate distribution.
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Simple Quantile Regression – 2 

.25

x)x(25. 



Example: Hypothetical 

Distributions



Example: OLS Regression 

Results 



Example: Quantile

Regression Results 



Simple Quantile Regression – 3 

A quantile regression model is identifiable if

has a unique solution. 
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Simple Quantile

Regression – 4 

 Let Y=α+βx+u with α=β=1, u~N(0,1). 
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Example: Simple Linear 

Regression

 Food Expenditure 

vs Income

 Engel’s (1857)

survey of 235 

Belgian households 

 Change of slope at 

different quantiles?



Example: Quantile

Regression Analysis – 1 

Daily High Temperature
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Example: Quantile

Regression Analysis – 2



Example: Quantile

Regression Analysis – 3



Example: Quantile

Regression Analysis – 4
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General Quantile

Regression

yt = 1 + 2x2t + ... + kxkt + ut, 

Y=X +u

iy X   



Quantile Regression Estimation – 1 

 The quantile regression coefficients are 

the solution to 
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Quantile Regression 

Estimation – 2 



Quantile Regression Estimation – 3 

The k first order conditions are
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Quantile Regression 

Estimation – 4

 The fitted line will go through k data 

points.

 The # of negative residuals ≤ np ≤ # of 

neg residuals + # of zero residuals

 The computational algorithm is to set up 

the objective function as a linear 

programming problem

 The solution of the system need not be 

unique.



Quantile Regression 

Representation

- coefficient vector, associated with 

pth-quantile
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Regression quality

 Instead of the coefficient of determination it 
is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth

quantile.
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Quantile Regression 

Properties

 Robust to outliers.  As long as the sign of 

the residual does not change, any Yi may 

be changed without shifting the 

conditional quantile line.

 The regression quantiles are correlated.



PROPERTIES OF THE 
ESTIMATOR



Properties of the 

Estimator – 1 

 Asymptotic Distribution

 The covariance depends on the unknown 

f(.) and the value of the vector x at which 

the covariance is being evaluated.
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Properties of the Estimator - 2

 When the error is independent of x then 

the coefficient covariance reduces to 

where
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Properties of the 

Estimator – 3 

 In general the quantile regression 

estimator is more efficient than OLS

 The efficient estimator requires 

knowledge of the true error distribution. 



Coefficient Interpretation

The marginal change in the pth conditional 

quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 

ith person will remain in the same quantile

after her x is changed.
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Quantile Regression

Hypothesis Testing

 Given asymptotic normality, one can 

construct asymptotic t-statistics for the 

coefficients

 The error term may be heteroscedastic. 

The test statistic is, in construction, 

similar to the Wald Test.

 A test for symmetry, also resembling a 

Wald Test, can be built relying on the 

invariance properties referred to above.



Heteroscedasticity

 Model: yi = β0+β1xi+ui , with iid errors.

◦ The quantiles are a vertical shift of one 

another.

 Model: yi = β0+β1xi+σ(xi)ui , errors are 

now heteroscedastic.

◦ The quantiles now exhibit a location shift as 

well as a scale shift.

 Khmaladze-Koenker Test Statistic



EXAMPLE
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Regression Estimation 

(OLS)



Residuals
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Normal distribution test
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Quantile Regression 

Estimation



Forecasting errors

Period OLS
Quantile

regression, 

p=0,8

1Q2012 2,39% -0,87%

2Q2012 5,15% -1,03%

(1Q+2Q)2012 3,79% -0,95%



One more model



Residuals
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Normal distribution test
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Quantile regression 

estimation



Forecasting errors

Period
OLS

Quantile

regression, 

p=0,5

1Q2012 9,67% -13,82%

2Q2012 28,57% 6,20%

(1Q+2Q)2012 19,02% -3,92%



REVIEW



Problems – 1 

 The distribution of Y, the 

“dependent” variable, conditional on 

the covariate X, may have thick tails.

 The conditional distribution of Y may 

be asymmetric.

 The conditional distribution of Y may 

not be unimodal.



Problems – 2

 ANOVA and regression provide information 
only about the conditional mean.

 Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

 More knowledge about the distribution of the 
statistic may be important.

 The covariates may shift not only the location 
or scale of the distribution, they may affect the 
shape as well.



Reasons to use quantiles 

rather than means
 Analysis of distribution rather than average

 Robustness

 Skewed data

 Interested in representative value

 Interested in tails of distribution

 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



Quantile Function

 Cumulative Distribution 
Function

 Quantile Function

 Discrete step function
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Quantile Regression 

Representation

- coefficient vector, associated with pth-

quantile

    | , T

i iQ p X p X p 

 p



Quantile Regression Graph
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Quantile Regression 

Estimation

 The quantile regression coefficients are 

the solution to 
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Regression quality

 Instead of the coefficient of determination it 
is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth
quantile.
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Quantile Regression 

Properties

 Robust to outliers.  As long as the sign of 

the residual does not change, any Yi may 

be changed without shifting the 

conditional quantile line.

 The regression quantiles are correlated.



Coefficient Interpretation

The marginal change in the Θth conditional 

quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 

ith person will remain in the same quantile

after her x is changed.
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QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!


