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MOTIVATION OF
QUANTILE
REGRESSION



Problems – 1 

 The conditional distribution 

of Y may not be unimodal.

 The distribution of Y, the 

“dependent” variable, conditional 

on the covariate X, may have thick 

tails.

 The conditional distribution of Y 

may be asymmetric.



Problems – 2

ANOVA and regression provide information only 
about the conditional mean.

Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

More knowledge about the distribution of the 
statistic may be important.

The covariates may shift not only the location or 
scale of the distribution, they may affect the 
shape as well.
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Example: means with 

error bars



Example: quantiles
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Reasons to use quantiles 

rather than means

 Analysis of distribution rather than average

 Robustness

 Skewed data

 Interested in representative value

 Interested in tails of distribution

 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



QUANTILE
REGRESSION 
ESTIMATION



Quadratic loss function

yt = 1 + 2x2t + ... + kxkt + ut, 

 Ordinarily we specify a quadratic loss 

function: 

L(u) = Σu2

 Under quadratic loss we use the 

conditional mean, via regression or 

ANOVA, as our predictor of Y for a given 

X=x.



Quantile definition

 For a given p∈[0, 1] a pth quantile of a 

random variable Z is any number ζp such 

that 

Pr(Z< ζp ) ≤ p ≤ Pr(Z ≤ ζp ). 

 The solution always exists, but needs not 

be unique.

 Ex: Suppose Z={3, 4, 7, 9, 9, 11, 17, 21} 

and p=0.5 then

Pr(Z<9) = 3/8 ≤ 1/2 ≤ Pr(Z ≤ 9) = 5/8



Quantiles

Quantiles can be used to characterize a 

distribution:

oMedian

oInterquartile Range

oInterdecile Range

oSymmetry = (ζ.75- ζ.5)/(ζ.5- ζ.25)

oTail Weight = (ζ.90- ζ.10)/(ζ.75- ζ.25)



Quantile Function

 Cumulative Distribution 
Function

 Quantile Function

 Discrete step function
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Quantile

 Suppose Z is a continuous random 

variable with cumulative distribution 

function F(.), then 

Pr(Z<z) = Pr(Z≤z)=F(z) 

for every z in the support and a pth quantile

is any number ζp such that F(ζp) = p

 If F is continuous and strictly increasing 

then the inverse exists and ζp =F-1(p)



The asymmetric absolute 

loss function – 1 

 The asymmetric absolute loss function is 

where u is the prediction error we have 

made and I(u) is an indicator function of the 

sort
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Absolute Loss vs. 

Quadratic Loss
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The asymmetric absolute 

loss function – 2 

 Under the asymmetric absolute loss 

function Lp a best predictor of Y given 

X=x is a pth conditional quantile. 

 For example, if p=.5 then the best 

predictor is the median.
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Simple Quantile Regression – 1 

 A parametric quantile regression model is 
correctly specified if, for example,

 That is,            is a particular linear 
combination of the independent variable(s) 
such that

where F( ) is some univariate distribution.
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Simple Quantile Regression – 2 
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Example: Hypothetical 

Distributions



Example: OLS Regression 

Results 



Example: Quantile

Regression Results 



Simple Quantile Regression – 3 

A quantile regression model is identifiable if

has a unique solution. 
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Simple Quantile

Regression – 4 

 Let Y=α+βx+u with α=β=1, u~N(0,1). 

x

Y

90%

75%

50%

25%

10%



Example: Simple Linear 

Regression

 Food Expenditure 

vs Income

 Engel’s (1857)

survey of 235 

Belgian households 

 Change of slope at 

different quantiles?



Example: Quantile

Regression Analysis – 1 
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Example: Quantile

Regression Analysis – 2



Example: Quantile

Regression Analysis – 3



Example: Quantile

Regression Analysis – 4
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General Quantile

Regression

yt = 1 + 2x2t + ... + kxkt + ut, 

Y=X +u

iy X   



Quantile Regression Estimation – 1 

 The quantile regression coefficients are 

the solution to 
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Quantile Regression 

Estimation – 2 



Quantile Regression Estimation – 3 

The k first order conditions are
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Quantile Regression 

Estimation – 4

 The fitted line will go through k data 

points.

 The # of negative residuals ≤ np ≤ # of 

neg residuals + # of zero residuals

 The computational algorithm is to set up 

the objective function as a linear 

programming problem

 The solution of the system need not be 

unique.



Quantile Regression 

Representation

- coefficient vector, associated with 

pth-quantile
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Regression quality

 Instead of the coefficient of determination it 
is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth

quantile.
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Quantile Regression 

Properties

 Robust to outliers.  As long as the sign of 

the residual does not change, any Yi may 

be changed without shifting the 

conditional quantile line.

 The regression quantiles are correlated.



PROPERTIES OF THE 
ESTIMATOR



Properties of the 

Estimator – 1 

 Asymptotic Distribution

 The covariance depends on the unknown 

f(.) and the value of the vector x at which 

the covariance is being evaluated.
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Properties of the Estimator - 2

 When the error is independent of x then 

the coefficient covariance reduces to 

where
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Properties of the 

Estimator – 3 

 In general the quantile regression 

estimator is more efficient than OLS

 The efficient estimator requires 

knowledge of the true error distribution. 



Coefficient Interpretation

The marginal change in the pth conditional 

quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 

ith person will remain in the same quantile

after her x is changed.
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Quantile Regression

Hypothesis Testing

 Given asymptotic normality, one can 

construct asymptotic t-statistics for the 

coefficients

 The error term may be heteroscedastic. 

The test statistic is, in construction, 

similar to the Wald Test.

 A test for symmetry, also resembling a 

Wald Test, can be built relying on the 

invariance properties referred to above.



Heteroscedasticity

 Model: yi = β0+β1xi+ui , with iid errors.

◦ The quantiles are a vertical shift of one 

another.

 Model: yi = β0+β1xi+σ(xi)ui , errors are 

now heteroscedastic.

◦ The quantiles now exhibit a location shift as 

well as a scale shift.

 Khmaladze-Koenker Test Statistic



EXAMPLE
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Regression Estimation 

(OLS)



Residuals
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Normal distribution test
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Quantile Regression 

Estimation



Forecasting errors

Period OLS
Quantile

regression, 

p=0,8

1Q2012 2,39% -0,87%

2Q2012 5,15% -1,03%

(1Q+2Q)2012 3,79% -0,95%



One more model



Residuals
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Normal distribution test
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Quantile regression 

estimation



Forecasting errors

Period
OLS

Quantile

regression, 

p=0,5

1Q2012 9,67% -13,82%

2Q2012 28,57% 6,20%

(1Q+2Q)2012 19,02% -3,92%



REVIEW



Problems – 1 

 The distribution of Y, the 

“dependent” variable, conditional on 

the covariate X, may have thick tails.

 The conditional distribution of Y may 

be asymmetric.

 The conditional distribution of Y may 

not be unimodal.



Problems – 2

 ANOVA and regression provide information 
only about the conditional mean.

 Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

 More knowledge about the distribution of the 
statistic may be important.

 The covariates may shift not only the location 
or scale of the distribution, they may affect the 
shape as well.



Reasons to use quantiles 

rather than means
 Analysis of distribution rather than average

 Robustness

 Skewed data

 Interested in representative value

 Interested in tails of distribution

 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



Quantile Function

 Cumulative Distribution 
Function

 Quantile Function

 Discrete step function
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Quantile Regression 

Representation

- coefficient vector, associated with pth-

quantile
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Quantile Regression Graph
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Quantile Regression 

Estimation

 The quantile regression coefficients are 

the solution to 
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Regression quality

 Instead of the coefficient of determination it 
is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth
quantile.
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Quantile Regression 

Properties

 Robust to outliers.  As long as the sign of 

the residual does not change, any Yi may 

be changed without shifting the 

conditional quantile line.

 The regression quantiles are correlated.



Coefficient Interpretation

The marginal change in the Θth conditional 

quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 

ith person will remain in the same quantile

after her x is changed.
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QUESTIONS?
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