QUANTILE REGRESSION

Ass.Prof. Andriy Stavytskyy

Agenda

- Motivation of Quantile Regression
- Quantile regression Estimation
- Properties of the Estimator
- Example

[°] MOTIVATION OF QUANTILE REGRESSION

Problems – 1

- The distribution of Y, the *"dependent"* variable, conditional on the covariate X, may have *thick tails*.
- The conditional distribution of Y may be *asymmetric*.
- The conditional distribution of Y may *not be unimodal*.

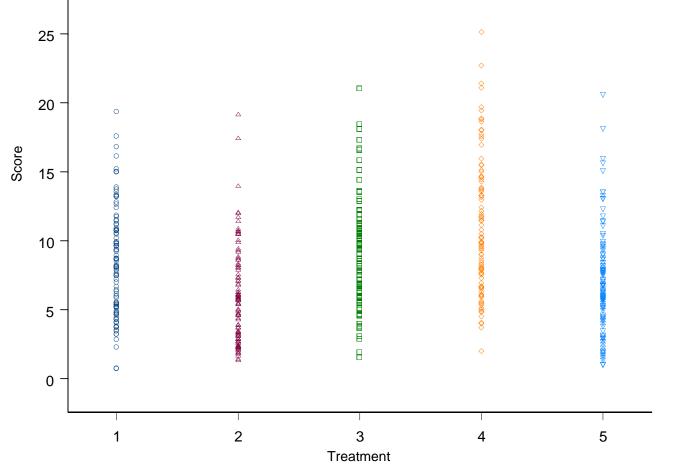
Problems – 2

ANOVA and regression provide information *only about the conditional mean*.

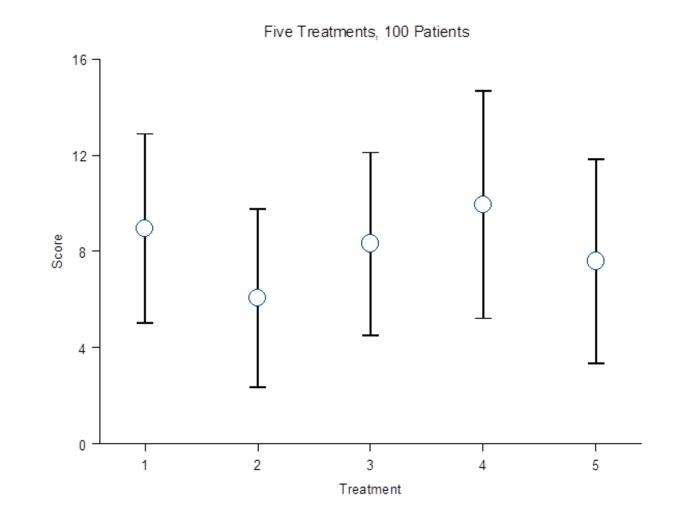
- Neither regression nor ANOVA will give us robust results. Outliers are problematic, the mean is pulled toward the skewed tail, multiple modes will not be revealed.
- More knowledge about the distribution of the statistic may be important.
- The covariates may shift not only the location or scale of the distribution, *they may affect the shape as well*.

Example: data

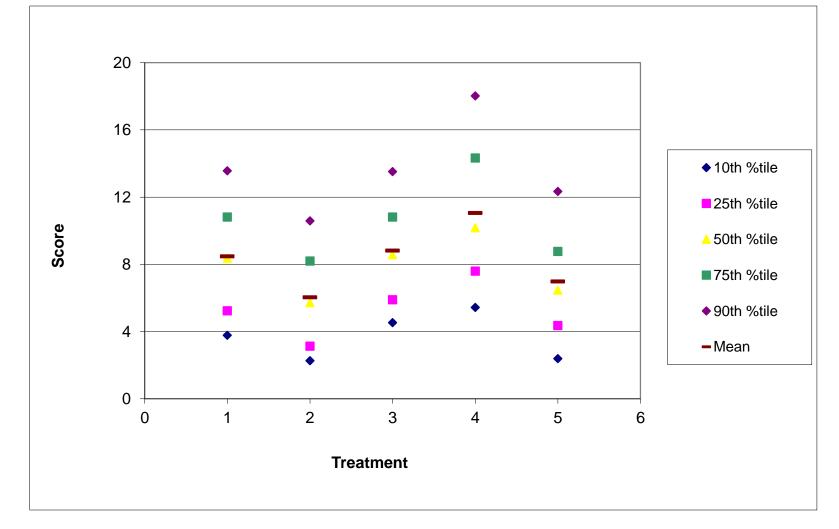
Five Treatments, 100 Patients



Example: means with error bars



Example: quantiles



Reasons to use quantiles rather than means

- Analysis of distribution rather than average
- Robustness
- Skewed data
- Interested in representative value
- Interested in tails of distribution
- Unequal variation of samples
- **E.g.** Income distribution is highly skewed so median relates more to typical person that mean.

QUANTILE REGRESSION ESTIMATION

0

Quadratic loss function

 $y_t = \beta_1 + \beta_2 x_{2t} + \ldots + \beta_k x_{kt} + u_t,$

• Ordinarily we specify a quadratic loss function:

$$\mathbf{L}(\mathbf{u}) = \Sigma \mathbf{u}^2$$

 Under quadratic loss we use the conditional mean, via regression or ANOVA, as our predictor of Y for a given X=x.

Quantile definition

• For a given $p \in [0, 1]$ a pth quantile of a random variable Z is any number ζ_p such that

 $\Pr(Z < \zeta_p) \le p \le \Pr(Z \le \zeta_p).$

- The solution always exists, but needs not be unique.
- Ex: Suppose Z={3, 4, 7, 9, 9, 11, 17, 21} and p=0.5 then

 $Pr(Z < 9) = 3/8 \le 1/2 \le Pr(Z \le 9) = 5/8$

Quantiles

Quantiles can be used to characterize a distribution:

- oMedian
- OInterquartile Range
- Interdecile Range
- •Symmetry = $(\zeta_{.75} \zeta_{.5})/(\zeta_{.5} \zeta_{.25})$ •Tail Weight = $(\zeta_{.90} - \zeta_{.10})/(\zeta_{.75} - \zeta_{.25})$

Quantile Function

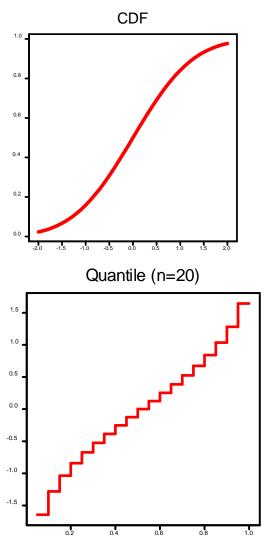
• Cumulative Distribution Function

$$F(y) = \operatorname{Prob}(Y \le y)$$

• Quantile Function

 $Q(\tau) = \min(y : F(y) \le \tau)$

• Discrete step function



Quantile

• Suppose Z is a continuous random variable with cumulative distribution function F(.), then

 $Pr(Z \le z) = Pr(Z \le z) = F(z)$

for every z in the support and a pth quantile is any number ζ_p such that $F(\zeta_p) = p$

• If F is continuous and strictly increasing then the inverse exists and $\zeta_p = F^{-1}(p)$

The asymmetric absolute loss function – 1

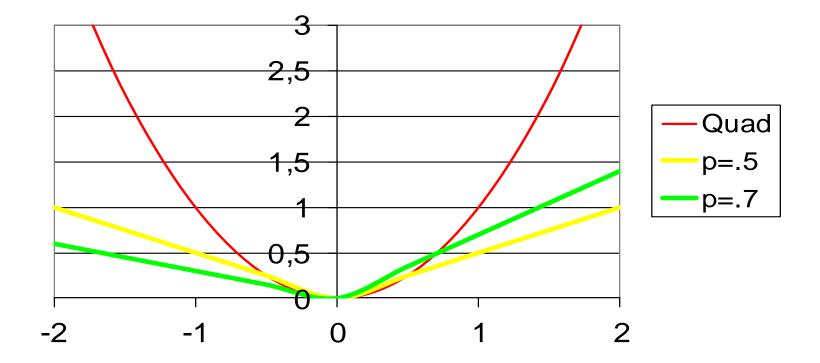
• The asymmetric absolute loss function is

$$L_{p} = [pI(u \ge 0) + (1-p)I(u < 0)]|u|$$
$$= [p-I(u < 0)]u$$

where u is the prediction error we have made and I(u) is an indicator function of the sort

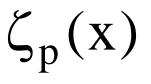
$$I(u \ge 0) = \begin{cases} 1, & \text{if } u \ge 0, \\ 0, & \text{if } u < 0. \end{cases}$$

Absolute Loss vs. Quadratic Loss



The asymmetric absolute loss function – 2

 Under the asymmetric absolute loss function L_p a best predictor of Y given X=x is a pth conditional quantile.



• For example, if p=.5 then the best predictor is the median.

Simple Quantile Regression – 1

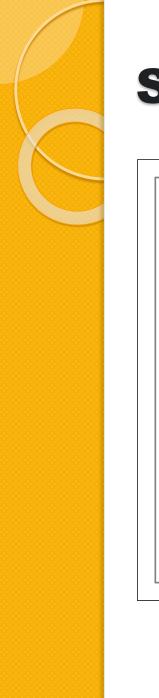
• A parametric quantile regression model is correctly specified if, for example,

$$\zeta_p(\mathbf{x}) = q(\mathbf{x}, \theta) = \alpha + \beta \mathbf{x}$$

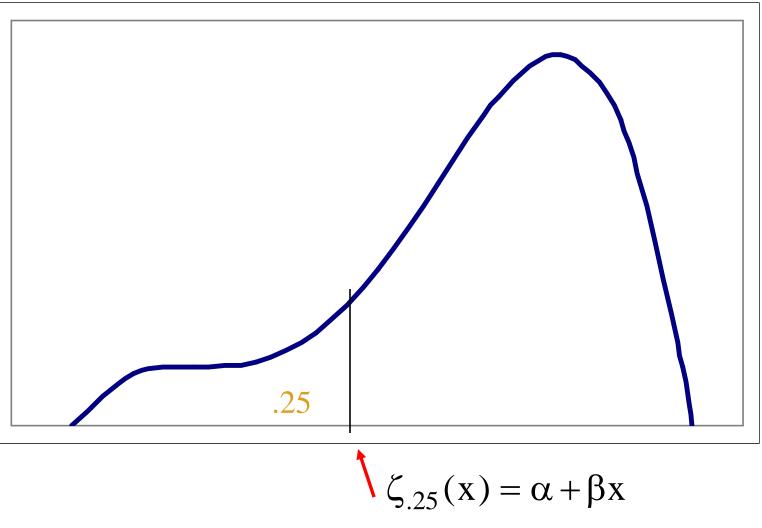
• That is, $\alpha + \beta x$ is a particular linear combination of the independent variable(s) such that

$$p = \Pr(Y \le \zeta_p(x) \mid X = x) = F(\zeta_p(x) \mid x)$$
$$= \Pr(Y \le \alpha + \beta x) = F(\zeta_p(x) - \alpha - \beta x)$$

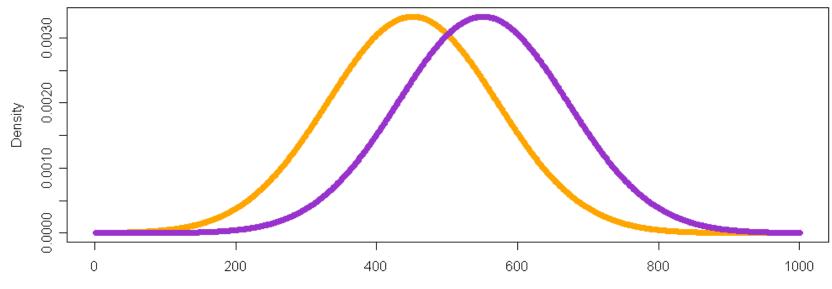
where F() is some univariate distribution.



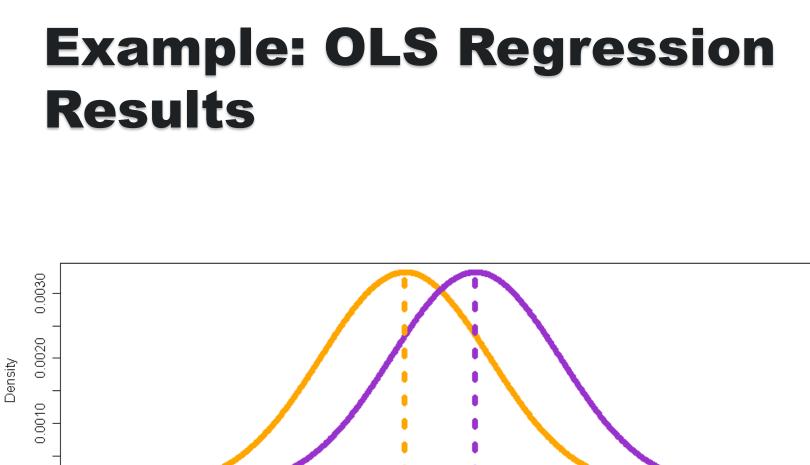
Simple Quantile Regression – 2

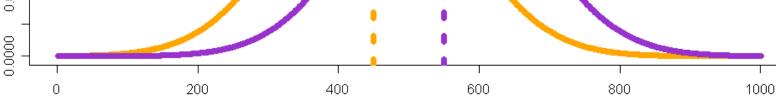


Example: Hypothetical Distributions



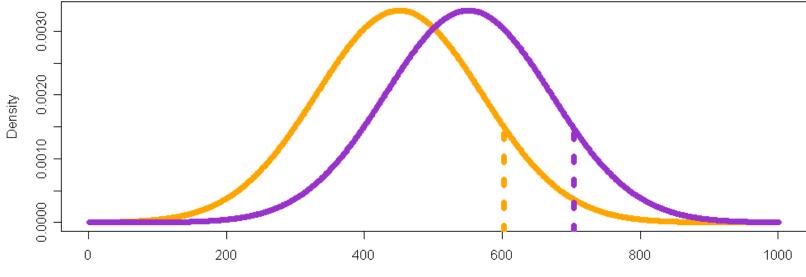
Mathematics Achievement





Mathematics Achievement

Example: Quantile Regression Results



Mathematics Achievement

Simple Quantile Regression – 3

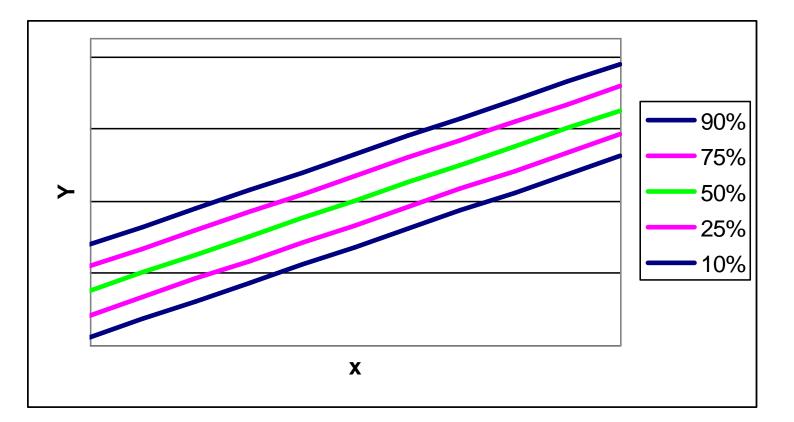
A quantile regression model is identifiable if

$$\min_{\alpha,\beta} E_F L_p (Y - \alpha - \beta x)$$

has a unique solution.

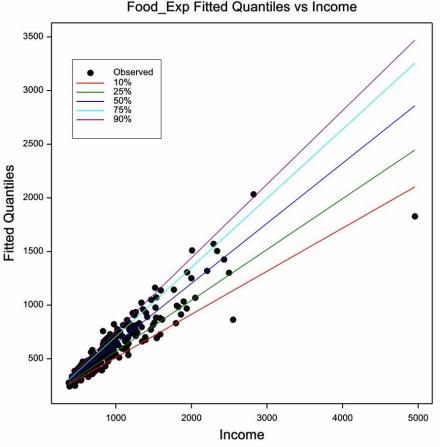
Simple Quantile Regression – 4

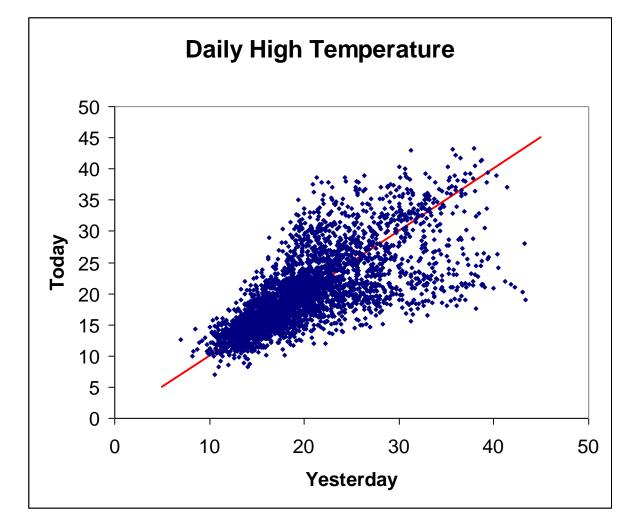
• Let $Y = \alpha + \beta x + u$ with $\alpha = \beta = 1$, $u \sim N(0,1)$.

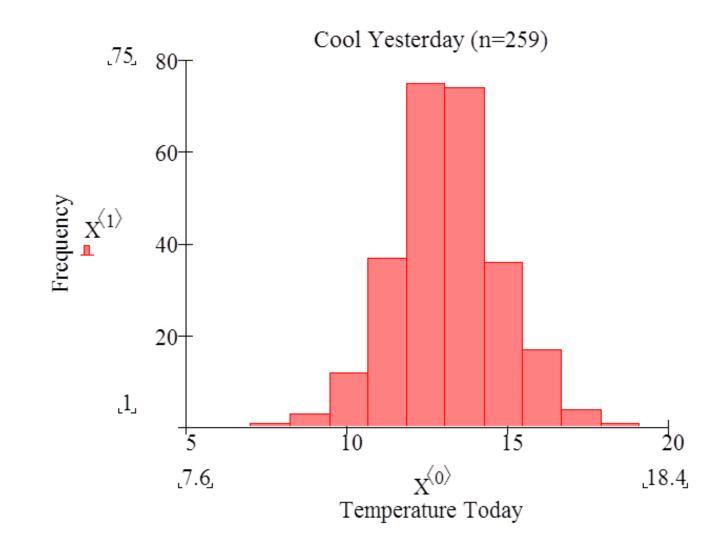


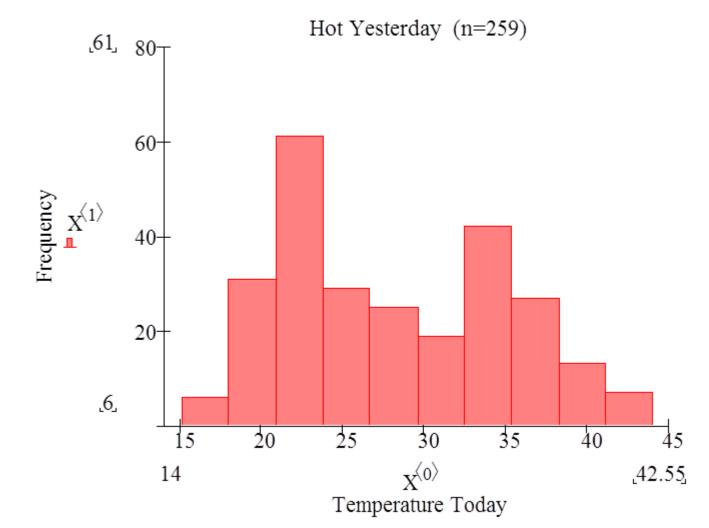
Example: Simple Linear Regression

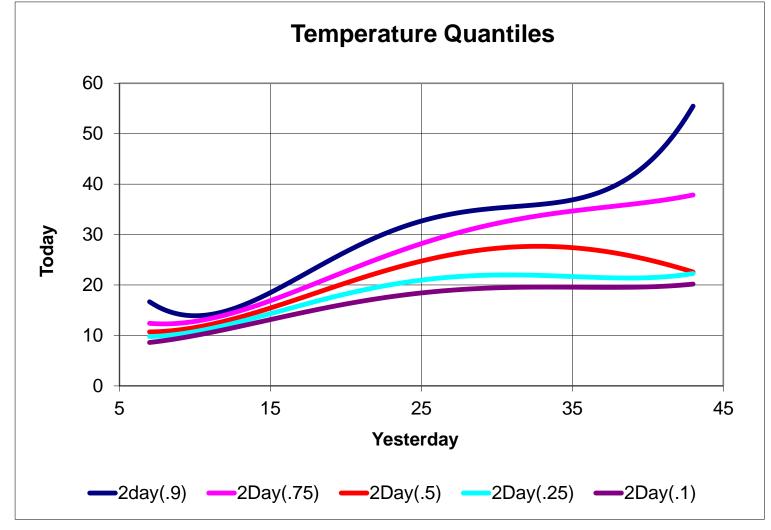
- Food Expenditure
 vs Income
- Engel's (1857) survey of 235
 Belgian households
- Change of slope at different quantiles?











 $y_{t} = \beta_{1} + \beta_{2}x_{2t} + ... + \beta_{k}x_{kt} + u_{t},$

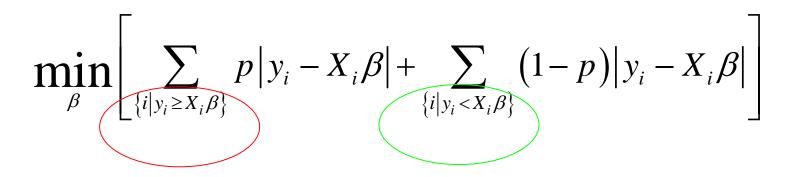
 $Y=X \beta+u$

 $y = X_i \beta + \varepsilon$

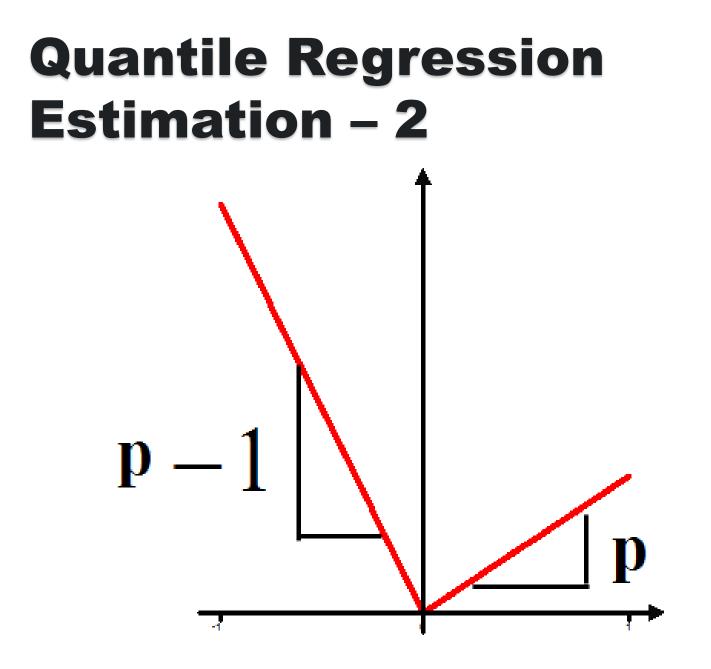
Quantile Regression Estimation – 1

• The quantile regression coefficients are the solution to

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left[p - \frac{1}{2} - \frac{1}{2} \operatorname{sgn}\left(y_i - x_i^T \beta \right) \right] \left(y_i - x_i^T \beta \right)$$



Negative residuals Positive residuals



Quantile Regression Estimation – 3

The k first order conditions are

$$\frac{1}{n} \sum_{i=1}^{n} \left[p - \frac{1}{2} + \frac{1}{2} \operatorname{sgn} \left(y_{i} - x_{i}^{T} \hat{\beta}_{p} \right) \right] x_{i} = 0$$

Quantile Regression Estimation – 4

- The fitted line will go through **k** data points.
- The # of negative residuals ≤ np ≤ # of neg residuals + # of zero residuals
- The computational algorithm is to set up the objective function as a linear programming problem
- The solution of the system need not be unique.

Quantile Regression Representation

 $Q(p | X_i, \beta(p)) = X_i^T \beta(p)$

 $\beta(p)$ - coefficient vector, associated with pth-quantile

Regression quality

• Instead of the coefficient of determination it is used its counterpart - the pseudo-R²:

$$\hat{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0))(Y_i - \beta_0(p) - X_{i1}^T \beta(p))$$

$$\overline{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0))(Y_i - \beta_0(p))$$

$$R^1(p) = 1 - \frac{\hat{V}(p)}{\overline{V}(p)}$$

 Pseudo-R² is located between 0 and 1 and measures the regression quality for pth quantile.

Quantile Regression Properties

- Robust to outliers. As long as the sign of the residual does not change, any Y_i may be changed without shifting the conditional quantile line.
- The regression quantiles **are correlated.**

• PROPERTIES OF THE ESTIMATOR

Properties of the Estimator – 1

Asymptotic Distribution

$$\sqrt{n} \left(\hat{\beta}_{\theta} - \beta_{\theta} \right) \xrightarrow{L} N(0, \Lambda_{\theta})$$

where

$$\Lambda_{\theta} = \theta(1-\theta) \left(E \left[f(0 \mid x_i) x_i x_i^T \right] \right)^{-1} E \left[x_i x_i^T \right] \left(E \left[f(0 \mid x_i) x_i x_i^T \right] \right)^{-1} \right)^{-1}$$

• The covariance depends on the unknown f(.) and the value of the vector x at which the covariance is being evaluated.

Properties of the Estimator - 2

• When the error is independent of x then the coefficient covariance reduces to

$$\Lambda_{\theta} = \frac{\theta(1-\theta)}{f_{u}^{2}(0)} \left(E\left(xx^{T}\right)\right)^{-1}$$

where

$$\hat{E}(x x^T) = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

Properties of the Estimator – 3

- In general the quantile regression estimator *is more efficient than OLS*
- The efficient estimator requires knowledge of the *true error distribution*.

Coefficient Interpretation $\partial Q_{\theta}(y_i | x_i)$

The marginal change in the p^{th} conditional quantile due to a marginal change in the j^{th} element of x. There is no guarantee that the i^{th} person will remain in the same quantile after her x is changed.

Quantile Regression Hypothesis Testing

- Given asymptotic normality, one can construct asymptotic t-statistics for the coefficients
- The error term may be heteroscedastic. The test statistic is, in construction, similar to the Wald Test.
- A test for symmetry, also resembling a Wald Test, can be built relying on the invariance properties referred to above.

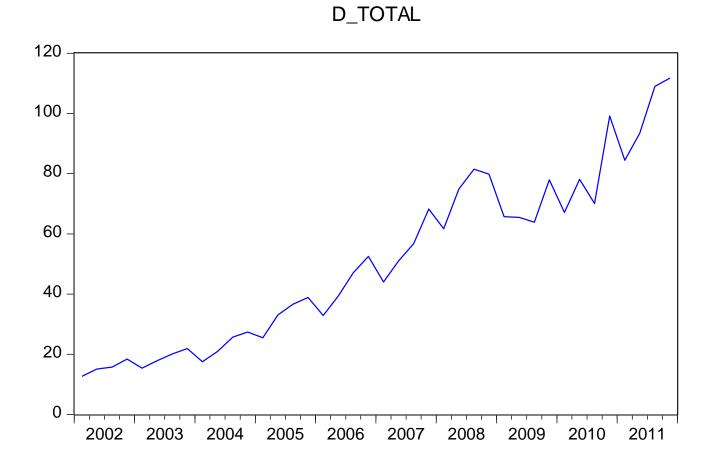
Heteroscedasticity

- Model: $y_i = \beta_0 + \beta_1 x_i + u_i$, with iid errors.
 - The quantiles are a vertical shift of one another.
- Model: $y_i = \beta_0 + \beta_1 x_i + \sigma(x_i) u_i$, errors are now heteroscedastic.
 - The quantiles now exhibit a location shift as well as a scale shift.
- Khmaladze-Koenker Test Statistic

EXAMPLE

0

Graph

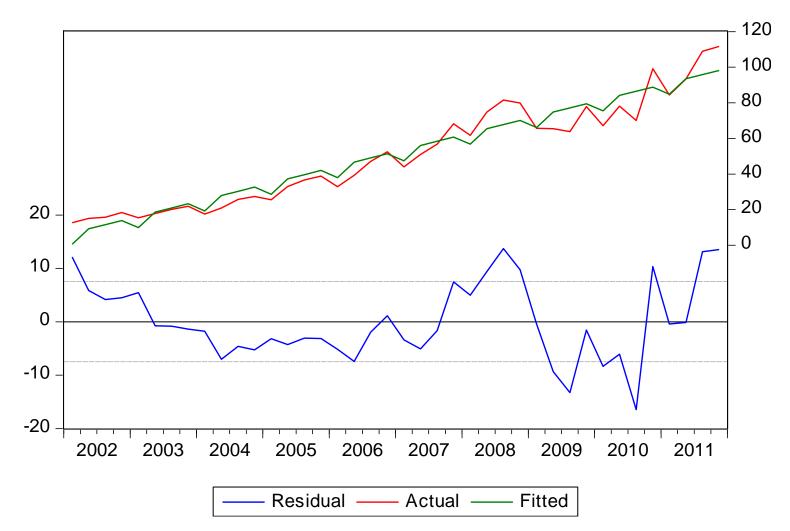


Regression Estimation (OLS)

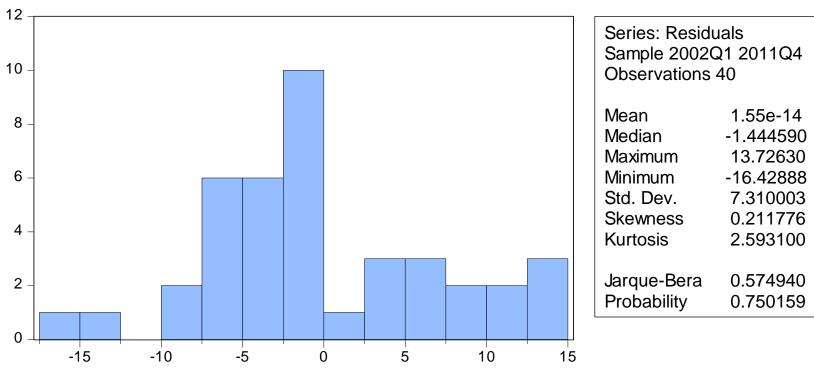
Dependent Variable: D_TOTAL Method: Least Squares Date: 12/09/12 Time: 19:28 Sample: 2002Q1 2011Q4 Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @SEAS(1)	6.890478 2.341282 -6.341187	2.475560 0.103089 2.748173	2.783401 22.71133 -2.307419	0.0084 0.0000 0.0267
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.934972 0.931457 7.504971 2084.010 -135.8209 265.9931 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		50.96017 28.66603 6.941047 7.067713 6.986845 0.889234

Residuals



Normal distribution test



Quantile Regression Estimation

Dependent Variable: D_TOTAL Method: Quantile Regression (tau = 0.8) Date: 12/09/12 Time: 19:37 Sample: 2002Q1 2011Q4 Included observations: 40 Huber Sandwich Standard Errors & Covariance Sparsity method: Kernel (Epanechnikov) using residuals Bandwidth method: Hall-Sheather, bw=0.16717 Estimation successful but solution may not be unique

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @SEAS(1)	10.72879 2.560419 -10.47433	3.563134 0.155048 4.175887	3.011054 16.51375 -2.508290	0.0047 0.0000 0.0166
Pseudo R-squared Adjusted R-squared S.E. of regression Quantile dependent var Sparsity Prob(Quasi-LR stat)	0.750713 0.737238 11.02736 77.93354 31.50867 0.000000	Mean dependent var S.D. dependent var Objective Restr. objective Quasi-LR statistic		50.96017 28.66603 82.14514 329.5204 98.13779

Forecasting errors

Period	OLS	Quantile regression, p=0,8	
1Q2012	2,39%	-0,87%	
2Q2012	5,15%	-1,03%	
(1Q+2Q)2012	3,79%	-0,95%	

One more model

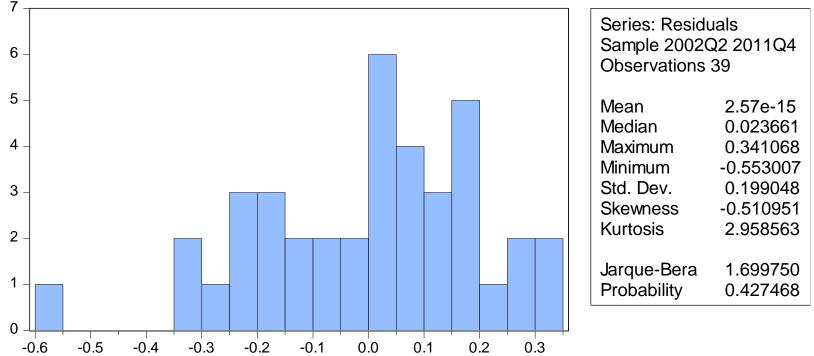
Dependent Variable: LOG(TAX_PDV) Method: Least Squares Date: 12/12/12 Time: 17:42 Sample (adjusted): 2002Q2 2011Q4 Included observations: 39 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LOG(TAX_PDV(-1)) Q	8.272613 0.040765 0.443702 -1.315177	1.584863 0.007814 0.106928 0.215333	5.219764 5.217266 4.149539 -6.107633	0.0000 0.0000 0.0002 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.941641 0.936639 0.207403 1.505561 8.122117 188.2458 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		16.22334 0.823956 -0.211391 -0.040769 -0.150173 1.711073

Residuals



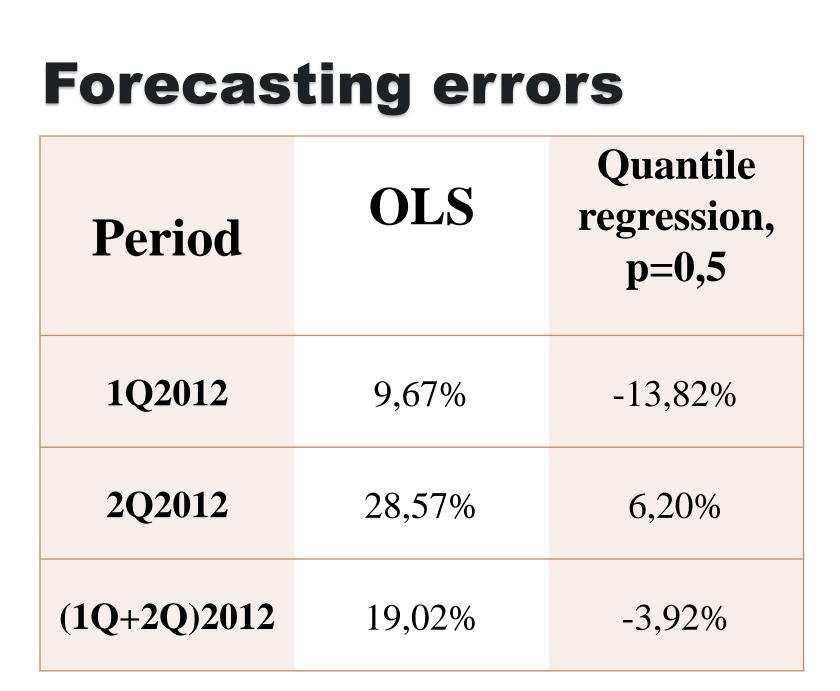
Normal distribution test



Quantile regression estimation

Dependent Variable: LOG(TAX_PDV) Method: Quantile Regression (Median) Date: 12/09/12 Time: 20:32 Sample (adjusted): 2002Q2 2011Q4 Included observations: 39 after adjustments Huber Sandwich Standard Errors & Covariance Sparsity method: Kernel (Epanechnikov) using residuals Bandwidth method: Hall-Sheather, bw=0.28649 Estimation successfully identifies unique optimal solution

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LOG(TAX_PDV(-1)) Q	5.611299 0.025320 0.628119 -1.291909	4.231787 0.021386 0.286227 0.238601	1.325988 1.183912 2.194481 -5.414524	0.1934 0.2444 0.0349 0.0000
Pseudo R-squared Adjusted R-squared S.E. of regression Quantile dependent var Sparsity Prob(Quasi-LR stat)	0.777288 0.758199 0.219122 16.47857 0.611171 0.000000	Mean dependent var S.D. dependent var Objective Restr. objective Quasi-LR statistic		16.22334 0.823956 3.001276 13.47605 137.1108



REVIEW

0

Problems – 1

- The distribution of Y, the
 - "dependent" variable, conditional on the covariate X, *may have thick tails*.
- The conditional distribution of Y may *be asymmetric.*
- The conditional distribution of Y may *not be unimodal*.

Problems – 2

- ANOVA and regression provide information only about the conditional mean.
- Neither regression nor ANOVA will give us robust results. Outliers are problematic, the mean is pulled toward the skewed tail, multiple modes will not be revealed.
- More knowledge about the distribution of the statistic may be important.
- The covariates may shift not only the location or scale of the distribution, they may affect the shape as well.

Reasons to use quantiles rather than means

- Analysis of distribution rather than average
- Robustness
- Skewed data
- Interested in representative value
- Interested in tails of distribution
- Unequal variation of samples
- **E.g.** Income distribution is highly skewed so median relates more to typical person that mean.

Quantile Function

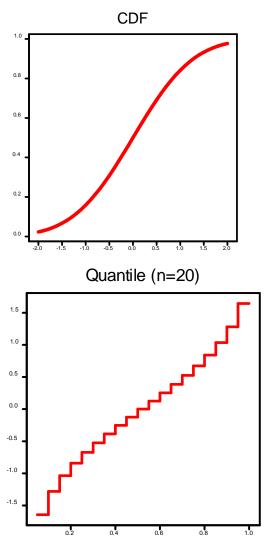
• Cumulative Distribution Function

$$F(y) = \operatorname{Prob}(Y \le y)$$

• Quantile Function

 $Q(\tau) = \min(y : F(y) \le \tau)$

• Discrete step function

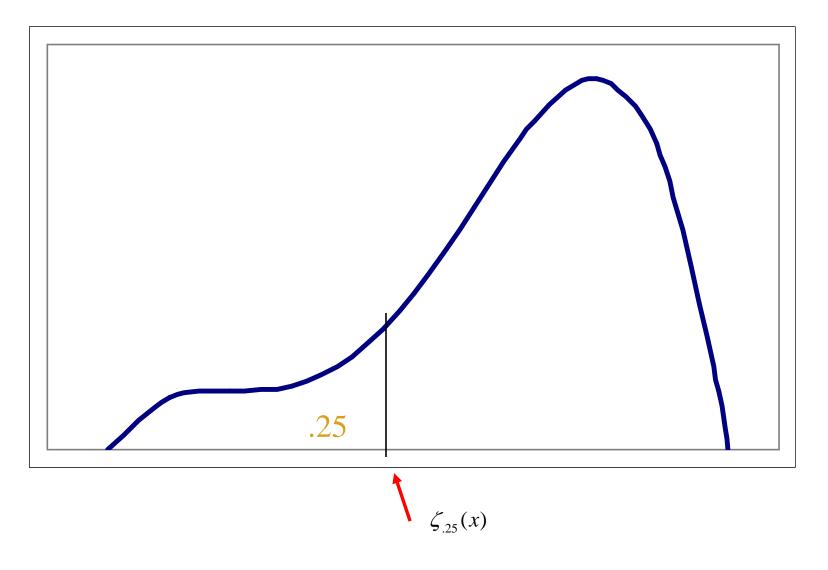


Quantile Regression Representation

 $Q(p | X_i, \beta(p)) = X_i^T \beta(p)$

 $\beta(p)$ - coefficient vector, associated with pth-quantile

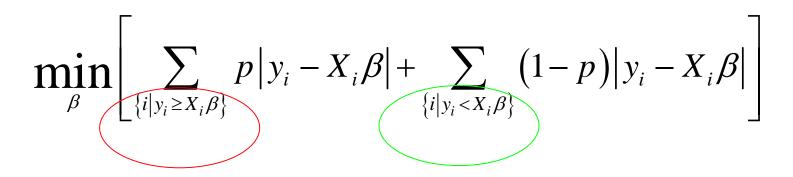
Quantile Regression Graph



Quantile Regression Estimation

• The quantile regression coefficients are the solution to

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left[p - \frac{1}{2} - \frac{1}{2} \operatorname{sgn}\left(y_i - x_i^T \beta \right) \right] \left(y_i - x_i^T \beta \right)$$



Negative residuals Positive residuals

Regression quality

• Instead of the coefficient of determination it is used its counterpart - the pseudo-R²:

$$\hat{V}(p) = \min_{\beta(p)} \sum_{i} u \left(p - I(u < 0) \right) \left(Y_{i} - \beta_{0}(p) - X_{i1}^{T} \beta(p) \right)$$
$$\overline{V}(p) = \min_{\beta(p)} \sum_{i} u \left(p - I(u < 0) \right) \left(Y_{i} - \beta_{0}(p) \right)$$
$$R^{2}(p) = 1 - \frac{\hat{V}(p)}{\overline{V}(p)}$$

• Pseudo-R² is located between 0 and 1 and measures the regression quality for pth quantile.

Quantile Regression Properties

- Robust to outliers. As long as the sign of the residual does not change, any Y_i may be changed without shifting the conditional quantile line.
- The regression quantiles are correlated.

Coefficient Interpretation

 $\partial Q_{\theta}(y_i | x_i)$

The marginal change in the Θ^{th} conditional quantile due to a marginal change in the jth element of x. There is no guarantee that the ith person will remain in the same quantile after her x is changed.

• QUESTIONS?

• THANK YOU FOR YOUR ATTENTION!