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~ MOTIVATION OF
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Problems - 1

= The distribution of Y, the
“dependent” variable, conditional
on the covariate X, may have thick
tails.

= The conditional distribution of Y
may be asymmetric.

The conditional distribution
of Y may not be unimodal.



Problems - 2

ANOVA and regression provide information only
about the conditional mean.

Neither regression nor ANOVA will give us
robust results. Outliers are problematic, the
mean Is pulled toward the skewed tail, multiple
modes will not be revealed.

More knowledge about the distribution of the
statistic may be important.

The covariates may shift not only the location or
scale of the distribution, they may affect the
shape as well.
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Example: means with
error bars

Five Treatments, 100 Patients
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Example: quantiles
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Reasons to use quantiles
rather than means

Analysis of distribution rather than average
Robustness

Skewed data

Interested In representative value

Interested in tails of distribution

Unequal variation of samples

E.g. Income distribution is highly skewed so
median relates more to typical person that
mean.



QUANTILE
REGRESSION
ESTIMATION




Quadratic loss function

Vi = Byt BoXor o F BiXi T U,
Ordinarily we specify a quadratic loss
function:

L(u) = 2u?
Under quadratic loss we use the
conditional mean, via regression or

ANOVA, as our predictor of Y for a given
X=X.



Quantile definition

For a given p€[0, 1] a pt" quantile of a
random variable Z is any number G, such
that
Pr(Z<G,)<p<Pr(Zz<¢,).

The solution always exists, but needs not
be unique.
Ex: Suppose Z={3,4,7,9,9, 11,17, 21}
and p=0.5 then

Pr(Z<9) =3/8<1/2<Pr(Z<9)=5/8



Quantiles

‘Quantiles can be used to characterize a
distribution:

Median

Interquartile Range

Interdecile Range

Symmetry = (C 75~ C5)/(C5- € 25)
Tail Weight = (€ g9~ € 10)/(C75- C 25)



Quantile Function

Cumulative Distribution
Function

F(y) =Prob(Y <)

Quantile Function

CDF
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Quantile (n=20)

Q(z) =min(y:F(y)<7) -

Discrete step function




Quantile

Suppose Z 1Is a continuous random
variable with cumulative distribution
function F(.), then
Pr(Z<z) = Pr(Z<z)=F(2)
for every z in the support and a pt quantile
Is any number C; such that F(C,) = p

If F Is continuous and strictly increasing
then the inverse exists and , =F*(p)



The asymmetric absolute
loss function - 1
The asymmetric absolute loss function is

L, =[pI(u>0)+@-p)I(u<0)]u

=[p—1(u<0)]u

where u Is the prediction error we have
made and I(u) Is an indicator function of the
sort

1, 1fu=>0,

'(UZO):{O ifu<0.



Absolute Loss vs.
Quadratic Loss
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The asymmetric absolute
loss function - 2

Under the asymmetric absolute loss
function L, a best predictor of Y given
X=x is a pt" conditional quantile.

Cp(X)

For example, if p=.5 then the best
predictor Is the median.



Simple Quantile Regression - 1

A parametric quantile regression model Is
correctly specified if, for example,

Cp(X) =0(X,0) = o+ X

That Is, o.+px Is a particular linear
combination of the independent variable(s)
such that

p="Pr(Y <, (x)| X=x)=F(,(x)|x)
=Pr(Y < a+pBx) = F({,(X) —a—px)

where F(') Is some univariate distribution.



Simple Quantile Regression — 2

25

\ €55 (x) = o+ B
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Density
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Example: OLS Regression
Results
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Density

Example: Quantile
Regression Results
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Simple Quantile Regression - 3

; A guantile regression model is identifiable if

r;u[rg EcL, (Y —a—PX)
has a unique solution.



Simple Quantile
Regression - 4
Let Y=a+pXx+u with a=p=1, u~N(0,1).
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Example: Simple Linear
Regression

Food_Exp Fitted Quantiles vs Income

Food Expenditure
vs Income

Engel’s (1857)
survey of 235
Belgian households

Change of slope at
different quantiles?
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Example: Quantile
Regression Analysis - 1

Daily High Temperature
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Example: Quantile
Regression Analysis - 2

Cool Yesterday (n=259)
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Example: Quantile
Regression Analysis - 3

Hot Yesterday (n=259)
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Example: Quantile
Regression Analysis - 4
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General Quantile
Regression

Vi =Byt BoXye t o BiX + U,
Y=X B+u

y=Xp+¢



Quantile Regression Estimation - 1

The quantile regression coefficients are
the solution to

min—> [ p—4=4son(y, ~x'8) (¥, ~ 4)

mir@y. -XiBl+ D, (1-p)ly - X4
B Ailyizxis {ily; <X; 8} |

Negative residuals




Quantile Regression
Estimation - 2




Quantile Regression Estimation - 3

The k first order conditions are

1o 11 :
52 P55 (=X, ) % =0




Quantile Regression
Estimation - 4

The fitted line will go through k data
points.

The # of negative residuals < np <# of
neg residuals + # of zero residuals

The computational algorithm is to set up
the objective function as a linear
programming problem

The solution of the system need not be
unique.



Quantile Regression
Representation

Q(pIX,.8(p))=X{B(p)

B( p) - coefficient vector, associated with
pth-quantile



Regression quality

Instead of the coefficient of determination it
IS used its counterpart - the pseudo-R?:

=min,, Zu( u<O)(Y £ (P)—-XiB(p))

V(p)=min, Zu( (u<0))(Y; = B (p))

Pseudo-R? is located between 0 and 1 and
measures the regression quality for pt
quantile.



Quantile Regression

Properties

Robust to outliers. As long as the sign of
the residual does not change, any Y; may
be changed without shifting the
conditional quantile line.

he regression quantiles are correlated.




- PROPERTIES OF THE
ESTIMATOR




Properties of the
Estimator - 1
Asymptotic Distribution
\/ﬁ(ﬁe _ﬂe)—L)N (O’Ae)

where

Ay =0(1=0) (E[f(0| Xi)XiXiT:|)l E[XixiT}(E[f(Ol xi)xixiT])l

The covariance depends on the unknown
f(.) and the value of the vector x at which
the covariance Is being evaluated.



Properties of the Estimator - 2

When the error is independent of x then
the coefficient covariance reduces to

0(1-0)

A= 70) (E(e))

u

where

A 1 <« n
E (X XT) - HZilei XiT



Properties of the
Estimator - 3

In general the quantile regression
estimator is more efficient than OLS

The efficient estimator requires
knowledge of the true error distribution.



Coefficient Interpretation

aQe(yi ‘Xi)
OX ..

1

The marginal change in the pt" conditional
quantile due to a marginal change in the j
element of X. There Is no guarantee that the
it person will remain in the same quantile
after her x Is changed.



Quantile Regression
Hypothesis Testing

Given asymptotic normality, one can
construct asymptotic t-statistics for the
coefficients

The error term may be heteroscedastic.
The test statistic IS, In construction,
similar to the Wald Test.

A test for symmetry, also resembling a
Wald Test, can be built relying on the
Invariance properties referred to above.




Heteroscedasticity

Model: y; = B,+B,x+u; , with 1id errors.

The quantiles are a vertical shift of one
another.

Model: y; = B,+B,X+o(X)u; , errors are
now heteroscedastic.

The guantiles now exhibit a location shift as
well as a scale shift.

Khmaladze-Koenker Test Statistic



EXAMPLE




Graph
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Regression Estimation
(OLS)

Dependent Variable: D_TOTAL

Method: Least Squares

Date: 12/0912 Time: 19:238

Sample: 200201 201104
Included observations: 40

Variable Coefficient Std. Error t-Statistic Praob.
C 6.890478 2 475560 2783401 0.0034
@TREMND 2341282 0.103039 2271133 0.0000
@SEAS(T) -6.341187 2748173 -2.307419 0.0267
F-squared 0.934972 Mean dependentvar 50.96017
Adjusted R-squared 0.931457 5.D. dependentvar 28.66603
S.E. of regression 7.504971  Akaike info criterion 6.941047
Sum squared resid 2084.010 Schwarz criterion F.067713
Log likelihood -135.82089 Hannan-Cluinn criter. 6.986845
F-statistic 2659931 Durbin-Watson stat 0.889234

Prob(F-statistic)

0.000000
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Normal distribution test

12

Series: Residuals
Sample 2002Q1 201104
Observations 40

Mean 1.55e-14

Median -1.444590
Maximum 13.72630
Minimum -16.42888
Std. Dev. 7.310003
Skewness 0.211776
Kurtosis 2.593100

Jarque-Bera  0.574940
Probability 0.750159




Quantile Regression

Estimation

Dependent Variable: D_TOTAL

Method: Qluantile Regression (tau = 0.8)
Date: 12/09M12 Time: 19:37

Sample: 200201 201104

Included observations: 40

Huber Sandwich Standard Errors & Covariance
sparsity method: Kernel (Epanechnikov) using residuals
Bandwidth method: Hall-S3heather, bw=016717
Estimation successful but solution may not be unigue

Variable Coefficient =td. Error t-Statistic Prob.
C 10728749 3563134 3.011054 0.0047
@TREMND 2 560419 0.155048 16.51375 0.0000
@sSEAS(T) -10.47433 4175887  -2.508290 0.0166
Fseudo R-squared 0.750712 Mean dependent var 50.96017
Adjusted R-squared 0737238 5.0 dependentvar 28.66603
S5.E. of regression 11.02736 Objective a2.14514
Cluantile dependent var F7.93354 Restr. objective 3295204
Sparsity 31.50867 Quasi-LR statistic 98.13779
Frob(Cluasi-LR stat) 0.000000




Forecasting errors

Quantile
Period OLS regression,
pP=0,8
10Q2012 2,39% -0,87%
202012 5,15% -1,03%

(1Q+2Q)2012  3,79% -0,95%



One more model

Dependent Variable: LOG(TAX_PDV)
Method: Least Squares

Date: 121212 Time: 1742

Sample (adjusted): 200202 201104
Included observations: 39 after adjustments

Variable Coefficient =td. Error t-Statistic Prob.
C 8.272613 1.584863 5.219764 0.0000
@TREMD 0.040765 0.007314 217266 0.0000
LOG(TAX_PDVI(-1)) 0.443702 0. 106928 4 149539 0.0002
] 1315177 0.215333 -6.107633 0.0000
F-squared 0.941641 Mean dependentvar 16.22334
Adjusted H-squared 0.9366389 5.D. dependentvar 0.823956
=.E. of regression 0207403 Akaike info criterion -0.211391
Sum squared resid 1.505561 Schwarz criterion -0.0407649
Log likelihood 8.122117  Hannan-Cluinn criter. -0.150173
F-statistic 188.2458 Durbin-Watson stat 1.711073

Prob(F-statistic) 0.000000
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Normal distribution test

Series: Residuals
6 | Sample 2_002Q2 201104
Observations 39

Mean 2.57e-15
Median 0.023661
4 4 Maximum 0.341068
Minimum -0.553007
3 | Std. Dev. 0.199048
Skewness -0.510951
5 Kurtosis 2.958563

Jarque-Bera  1.699750
Probability 0.427468
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Quantile regression
estimation

Dependent Variable: LOG(TAX_PDWV)

Method: Quantile Regression (Median)

Date: 1210912 Time: 20:32

Sample (adjusted): 200202 201104

Included observations: 39 after adjustments

Huber Sandwich Standard Errors & Covariance

Sparsity method: Kernel (Epanechnikov) using residuals
Bandwidth method: Hall-Sheather, bw=0.28649
Estimation successfully identifies unigue optimal solution

Variable Coefficient =td. Error t-Statistic Frob.
C 5.6112949 4 231787 1.325988 0.1934
@TREMND 0.025320 0.021386 1.183912 0.2444
LOG(TAX_PDV(-1) 0.628119 0286227 2194481 0.0349
Q -1.291909 0.238601 -5.414524 0.0000
Pseudo R-squared 0777288 WMean dependentvar 16.22334
Adjusted R-squared 0.7581989 35.D. dependentvar 0.823956
S.E. of regression 0.219122 Objective 3001276
CQuantile dependent var 16.47357 Restr. objective 13.47605
Sparsity 0611171 CQuasi-LR statistic 137.1108

FProb(Quasi-LR stat) 0.000000




Forecasting errors

Ol S Quant_ile
Period reg;:gs’gon’
102012 9,67% -13,82%
202012 28,57% 6,20%

(10+20Q)2012  19,02% -3,92%



REVIEW




Problems - 1

The distribution of Y, the

“dependent” variable, conditional on
the covariate X, may have thick tails.

The conditional distribution of Y may
be asymmetric.

The conditional distribution of Y may
not be unimodal.




Problems - 2

ANOVA and regression provide information
only about the conditional mean.

Neither regression nor ANOVA will give us
robust results. Outliers are problematic, the
mean Is pulled toward the skewed tail, multiple
modes will not be revealed.

More knowledge about the distribution of the
statistic may be important.

The covariates may shift not only the location
or scale of the distribution, they may affect the
shape as well.



Reasons to use quantiles

rather than means
Analysis of distribution rather than average
Robustness
Skewed data
Interested In representative value
Interested in tails of distribution
Unequal variation of samples

E.g. Income distribution is highly skewed so
median relates more to typical person that
mean.



Quantile Function

Cumulative Distribution
Function

F(y) =Prob(Y <)

Quantile Function

CDF
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Quantile (n=20)

Q(z) =min(y:F(y)<7) -

Discrete step function




Quantile Regression
Representation

Q(pIX,.8(p))=X{B(p)

p ( p) - coefficient vector, associated with pth-
guantile



Quantile Regression Graph
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Quantile Regression
Estimation

The quantile regression coefficients are
the solution to

min

RUVESY:

—zsn(y, - X' )] (v, - X 8)

p‘yi _ XiIB“" Z (1_ p)‘yi o Xiﬂ‘

{i|Yi<inB}

Negative residuals




Regression quality

Instead of the coefficient of determination it
IS used its counterpart - the pseudo-R?:

=min,, ZU( 1(u<0))(Yi -5 (p)-X1B(p))
V(p)=min, Zu( 1 (u<0))(Y; - B,(p))

Pseudo-R? is located between 0 and 1 and
measures the regression guality for pth
quantile.



Quantile Regression

Properties

Robust to outliers. As long as the sign of
the residual does not change, any Y; may
be changed without shifting the
conditional quantile line.

he regression quantiles are correlated.




Coefficient Interpretation

aQe(Yi ‘Xi)
OX ..

J

The marginal change in the ®™ conditional
quantile due to a marginal change in the j®
element of X. There Is no guarantee that the
it person will remain in the same quantile
after her x I1s changed.



- QUESTIONS?




- THANK YOU FOR
YOUR ATTENTION!




