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Agenda
 Motivation of Quantile Regression
 Quantile regression Estimation
 Properties of the Estimator
 Example



MOTIVATION OF
QUANTILE
REGRESSION



Problems – 1 

 The conditional distribution 
of Y may not be unimodal.

 The distribution of Y, the 
“dependent” variable, conditional 
on the covariate X, may have thick 
tails.

 The conditional distribution of Y 
may be asymmetric.



Problems – 2
ANOVA and regression provide information only 

about the conditional mean.

Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

More knowledge about the distribution of the 
statistic may be important.

The covariates may shift not only the location or 
scale of the distribution, they may affect the 
shape as well.



Example: data
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Example: means with 
error bars



Example: quantiles
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Reasons to use quantiles 
rather than means
 Analysis of distribution rather than average
 Robustness
 Skewed data
 Interested in representative value
 Interested in tails of distribution
 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



QUANTILE
REGRESSION 
ESTIMATION



Quadratic loss function
yt = β1 + β2x2t + ... + βkxkt + ut, 

 Ordinarily we specify a quadratic loss 
function: 

L(u) = Σu2

 Under quadratic loss we use the 
conditional mean, via regression or 
ANOVA, as our predictor of Y for a given 
X=x.



Quantile definition
 For a given p∈[0, 1] a pth quantile of a 

random variable Z is any number ζp such 
that 

Pr(Z< ζp ) ≤ p ≤ Pr(Z ≤ ζp ). 
 The solution always exists, but needs not 

be unique.
 Ex: Suppose Z={3, 4, 7, 9, 9, 11, 17, 21} 

and p=0.5 then
Pr(Z<9) = 3/8 ≤ 1/2 ≤ Pr(Z ≤ 9) = 5/8



Quantiles

Quantiles can be used to 
characterize a distribution:
oMedian
oInterquartile Range
oInterdecile Range
oSymmetry = (ζ.75- ζ.5)/(ζ.5- ζ.25)
oTail Weight = (ζ.90- ζ.10)/(ζ.75- ζ.25)



Quantile Function
 Cumulative Distribution 

Function

 Quantile Function

 Discrete step function
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Quantile
 Suppose Z is a continuous random 

variable with cumulative distribution 
function F(.), then 

Pr(Z<z) = Pr(Z≤z)=F(z) 
for every z in the support and a pth quantile
is any number ζp such that F(ζp) = p
 If F is continuous and strictly increasing 

then the inverse exists and ζp =F-1(p)



The asymmetric absolute 
loss function – 1 
 The asymmetric absolute loss function is 

where u is the prediction error we have 
made and I(u) is an indicator function of the 
sort
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Absolute Loss vs. 
Quadratic Loss
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The asymmetric absolute 
loss function – 2 

 Under the asymmetric absolute loss 
function Lp a best predictor of Y given 
X=x is a pth conditional quantile. 

 For example, if p=.5 then the best 
predictor is the median.

)x(pζ



Simple Quantile Regression – 1 
 A parametric quantile regression model is 

correctly specified if, for example,

 That is,            is a particular linear 
combination of the independent variable(s) 
such that

where F( ) is some univariate distribution.
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Simple Quantile Regression – 2 
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Example: Hypothetical 
Distributions



Example: OLS Regression 
Results 



Example: Quantile
Regression Results 



Simple Quantile Regression – 3 

A quantile regression model is identifiable if

has a unique solution. 
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Simple Quantile
Regression – 4 
 Let Y=α+βx+u with α=β=1, u~N(0,1). 
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Example: Simple Linear 
Regression

 Food Expenditure 
vs Income

 Engel’s (1857)
survey of 235 
Belgian households 

 Change of slope at 
different quantiles?



Example: Quantile
Regression Analysis – 1 
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Example: Quantile
Regression Analysis – 2



Example: Quantile
Regression Analysis – 3



Example: Quantile
Regression Analysis – 4
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General Quantile
Regression

yt = β1 + β2x2t + ... + βkxkt + ut, 

Y=X β+u

iy X β ε= +



Quantile Regression Estimation – 1 

 The quantile regression coefficients are 
the solution to 
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Quantile Regression 
Estimation – 2 



Quantile Regression Estimation – 3 

The k first order conditions are
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Quantile Regression 
Estimation – 4
 The fitted line will go through k data 

points.
 The # of negative residuals ≤ np ≤ # of 

neg residuals + # of zero residuals
 The computational algorithm is to set up 

the objective function as a linear 
programming problem

 The solution of the system need not be 
unique.



Quantile Regression 
Representation

- coefficient vector, associated with 
pth-quantile
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Regression quality
 Instead of the coefficient of determination it 

is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth

quantile.
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Quantile Regression 
Properties

 Robust to outliers.  As 
long as the sign of the 
residual does not change, 
any Yi may be changed 
without shifting the 
conditional quantile line.

 The regression quantiles
are correlated.



ROPERTIES

OF THE 

ESTIMATOR



Properties of the 
Estimator – 1 
 Asymptotic Distribution

 The covariance depends on the unknown 
f(.) and the value of the vector x at which 
the covariance is being evaluated.
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Properties of the Estimator - 2

 When the error is independent of x then 
the coefficient covariance reduces to 

where
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Properties of the 
Estimator – 3 

 In general the quantile regression 
estimator is more efficient than OLS

 The efficient estimator requires 
knowledge of the true error distribution. 



Coefficient Interpretation

The marginal change in the pth conditional 
quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 
ith person will remain in the same quantile
after her x is changed.
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Quantile Regression
Hypothesis Testing

 Given asymptotic normality, one can 
construct asymptotic t-statistics for the 
coefficients

 The error term may be heteroscedastic. 
The test statistic is, in construction, 
similar to the Wald Test.

 A test for symmetry, also resembling a 
Wald Test, can be built relying on the 
invariance properties referred to above.



Heteroscedasticity
 Model: yi = β0+β1xi+ui , with iid errors.
◦ The quantiles are a vertical shift of one 

another.
 Model: yi = β0+β1xi+σ(xi)ui , errors are 

now heteroscedastic.
◦ The quantiles now exhibit a location shift as 

well as a scale shift.
 Khmaladze-Koenker Test Statistic



EXAMPLE
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Regression Estimation 
(OLS)



Residuals
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Normal distribution test
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Regression Estimation 
(OLS)



Residuals
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Normal distribution test
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Sample 2002Q1 2011Q4
Observations 40

Mean       1.55e-14
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Quantile Regression 
Estimation



Forecasting errors

Period OLS
Quantile

regression, 
p=0,8

1Q2012 2,39% -0,87%

2Q2012 5,15% -1,03%

(1Q+2Q)2012 3,79% -0,95%



One more model
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Normal distribution test
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Quantile regression 
estimation



Forecasting errors

Period OLS
Quantile

regression, 
p=0,5

1Q2012 9,67% -13,82%

2Q2012 28,57% 6,20%

(1Q+2Q)2012 19,02% -3,92%



REVIEW



Problems – 1 
The distribution of Y, the 

“dependent” variable, conditional on 
the covariate X, may have thick tails.

The conditional distribution of Y may 
be asymmetric.

The conditional distribution of Y may 
not be unimodal.



Problems – 2
 ANOVA and regression provide information 

only about the conditional mean.

 Neither regression nor ANOVA will give us 
robust results.  Outliers are problematic, the 
mean is pulled toward the skewed tail, multiple 
modes will not be revealed.

 More knowledge about the distribution of the 
statistic may be important.

 The covariates may shift not only the location 
or scale of the distribution, they may affect the 
shape as well.



Reasons to use quantiles 
rather than means
 Analysis of distribution rather than average
 Robustness
 Skewed data
 Interested in representative value
 Interested in tails of distribution
 Unequal variation of samples

 E.g. Income distribution is highly skewed so 
median relates more to typical person that 
mean.



Quantile Function
 Cumulative Distribution 

Function

 Quantile Function

 Discrete step function
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Quantile Regression 
Representation

- coefficient vector, associated with pth-
quantile
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i iQ p X p X pβ β=
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Quantile Regression Graph
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Quantile Regression 
Estimation
 The quantile regression coefficients are 

the solution to 
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Regression quality
 Instead of the coefficient of determination it 

is used its counterpart - the pseudo-R2:

 Pseudo-R2 is located between 0 and 1 and 
measures the regression quality for pth
quantile.
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Quantile Regression 
Properties
 Robust to outliers.  As long as the sign of 

the residual does not change, any Yi may 
be changed without shifting the 
conditional quantile line.

 The regression quantiles are correlated.



Coefficient Interpretation

The marginal change in the Θth conditional 
quantile due to a marginal change in the jth

element of x.  There is no guarantee that the 
ith person will remain in the same quantile
after her x is changed.
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QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!
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