Quantile Regression

Ass.Prof. Andriy Stavytskyy

References

- **Buchinsky M.** (1998), "Recent Advances in Quantile Regression Models", Journal of Human Resources, Vo. 33, Pps. 88-126.
- Koenker R. (2005) "Introduction to Quantile Regression", Econometric Society Monograph Series, Cambridge University Press.

Agenda

- Motivation of Quantile Regression
- Quantile regression Estimation
- Properties of the Estimator
- Example

MOTIVATION OF QUANTILE REGRESSION

Problems - 1

The distribution of Y, the "dependent" variable, conditional on the covariate X, may have thick tails.

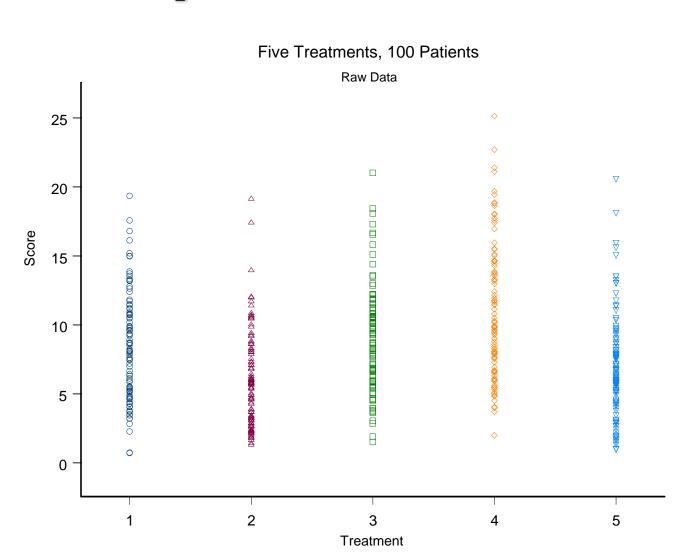
The conditional distribution of Y may be asymmetric.

• The conditional distribution of Y may *not be unimodal*.

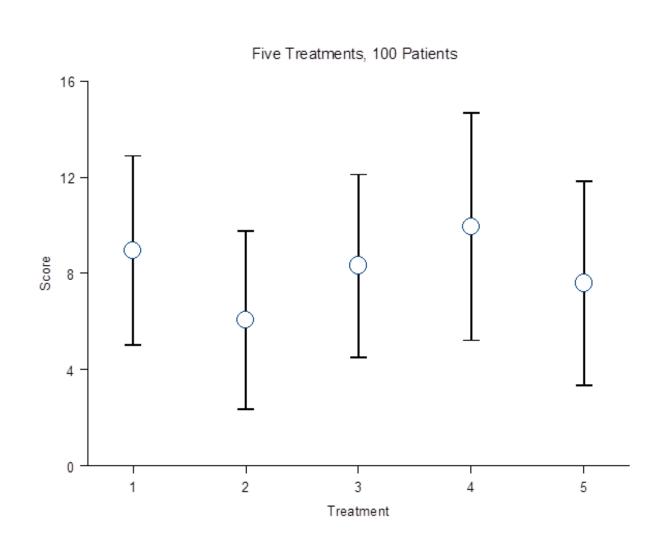
Problems - 2

- > ANOVA and regression provide information *only* about the conditional mean.
- Neither regression nor ANOVA will give us *robust results*. Outliers are problematic, the mean is pulled toward the skewed tail, multiple modes will not be revealed.
- > More knowledge about the distribution of the statistic *may be important*.
- The covariates may shift not only the location or scale of the distribution, *they may affect the shape as well.*

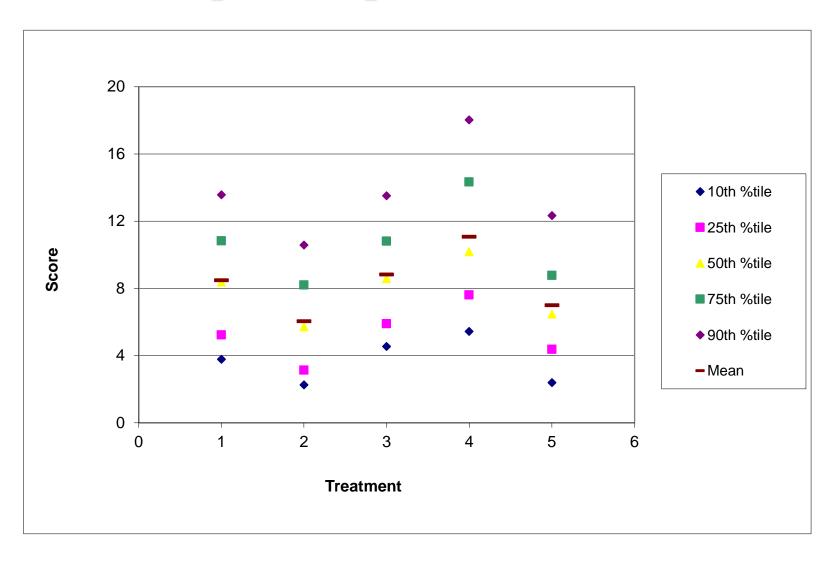
Example: data



Example: means with error bars

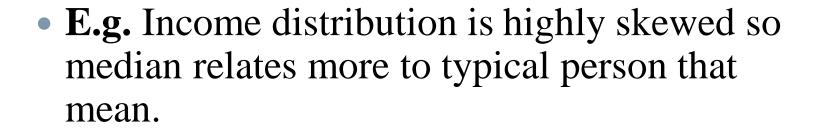


Example: quantiles



Reasons to use quantiles rather than means

- Analysis of distribution rather than average
- Robustness
- Skewed data
- Interested in representative value
- Interested in tails of distribution
- Unequal variation of samples



QUANTILE REGRESSION ESTIMATION

Quadratic loss function

$$y_t = \beta_1 + \beta_2 x_{2t} + ... + \beta_k x_{kt} + u_t,$$

• Ordinarily we specify a quadratic loss function:

$$L(u) = \Sigma u^2$$

 Under quadratic loss we use the conditional mean, via regression or ANOVA, as our predictor of Y for a given X=x.

Quantile definition

• For a given $p \in [0, 1]$ a p^{th} quantile of a random variable Z is any number ζ_p such that

$$Pr(Z < \zeta_p) \le p \le Pr(Z \le \zeta_p).$$

- The solution always exists, but needs not be unique.
- Ex: Suppose Z={3, 4, 7, 9, 9, 11, 17, 21} and p=0.5 then

$$Pr(Z<9) = 3/8 \le 1/2 \le Pr(Z \le 9) = 5/8$$

Quantiles

Quantiles can be used to characterize a distribution:

- Median
- oInterquartile Range
- oInterdecile Range
- oSymmetry = $(\zeta_{.75} \zeta_{.5})/(\zeta_{.5} \zeta_{.25})$
- oTail Weight = $(\zeta_{.90}$ $\zeta_{.10})/(\zeta_{.75}$ $\zeta_{.25})$

Quantile Function

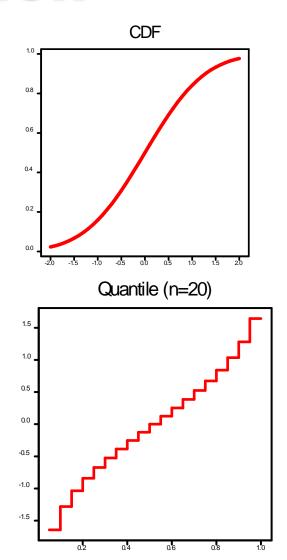
 Cumulative Distribution Function

$$F(y) = \operatorname{Prob}(Y \le y)$$

Quantile Function

$$Q(\tau) = \min(y : F(y) \le \tau)$$

Discrete step function



Quantile

• Suppose Z is a continuous random variable with cumulative distribution function F(.), then

$$Pr(Z \le z) = Pr(Z \le z) = F(z)$$

for every z in the support and a pth quantile is any number ζ_p such that $F(\zeta_p) = p$

• If F is continuous and strictly increasing then the inverse exists and $\zeta_p = F^{-1}(p)$

The asymmetric absolute loss function – 1

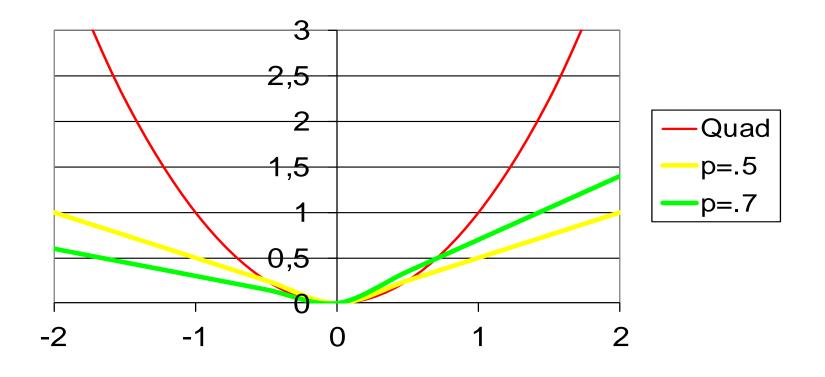
• The asymmetric absolute loss function is

$$L_{p} = [p I(u \ge 0) + (1-p) I(u < 0)]|u|$$
$$= [p - I(u < 0)]u$$

where u is the prediction error we have made and I(u) is an indicator function of the sort

$$I(u \ge 0) = \begin{cases} 1, & \text{if } u \ge 0, \\ 0, & \text{if } u < 0. \end{cases}$$

Absolute Loss vs. Quadratic Loss



The asymmetric absolute loss function – 2

 Under the asymmetric absolute loss function L_p a best predictor of Y given X=x is a pth conditional quantile.

$$\zeta_{p}(x)$$

• For example, if p=.5 then the best predictor is the median.

Simple Quantile Regression - 1

• A parametric quantile regression model is correctly specified if, for example,

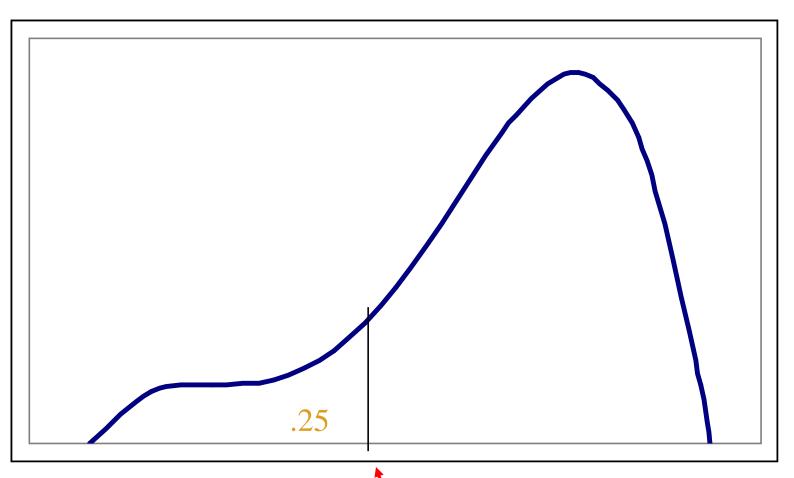
$$\zeta_{p}(x) = q(x, \theta) = \alpha + \beta x$$

• That is, $\alpha + \beta x$ is a particular linear combination of the independent variable(s) such that

$$p = Pr(Y \le \zeta_p(x) | X = x) = F(\zeta_p(x) | x)$$
$$= Pr(Y \le \alpha + \beta x) = F(\zeta_p(x) - \alpha - \beta x)$$

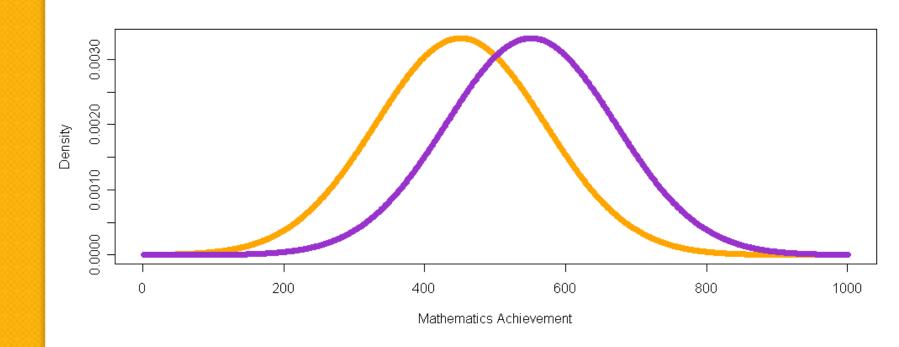
where F() is some univariate distribution.

Simple Quantile Regression – 2

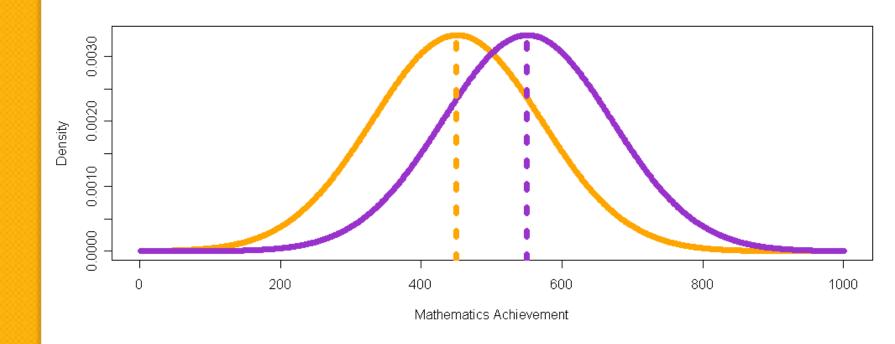


$$\zeta_{.25}(\mathbf{x}) = \alpha + \beta \mathbf{x}$$

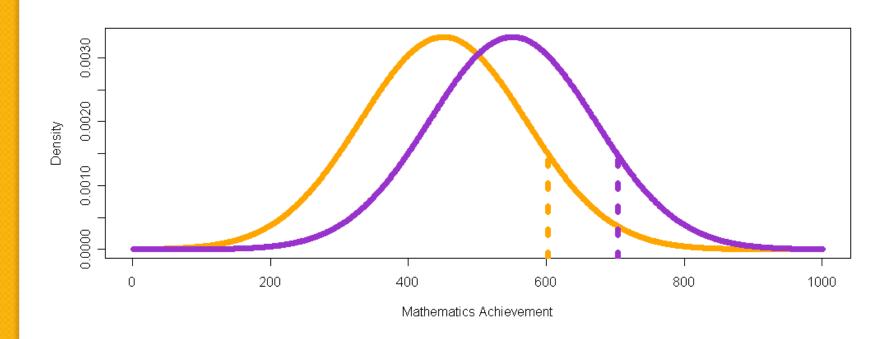
Example: Hypothetical Distributions



Example: OLS Regression Results



Example: Quantile Regression Results

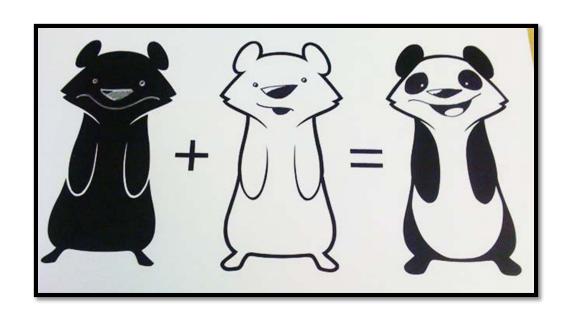


Simple Quantile Regression - 3

A quantile regression model is identifiable if

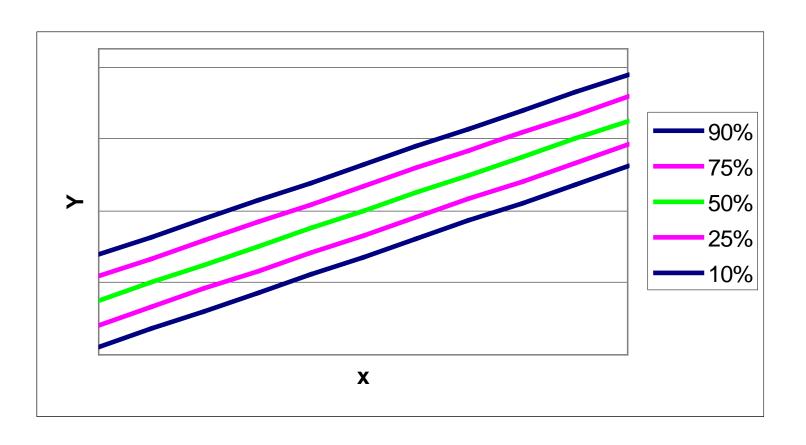
$$\min_{\alpha,\beta} E_F L_p(Y - \alpha - \beta x)$$

has a unique solution.



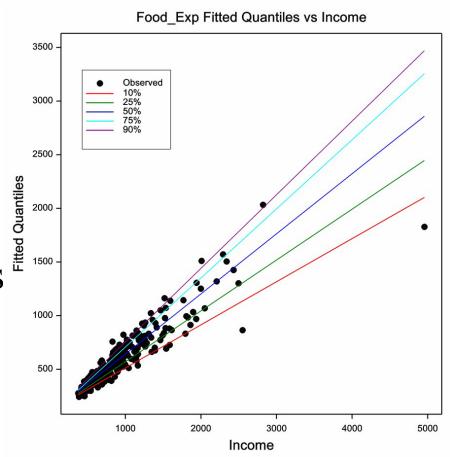
Simple Quantile Regression - 4

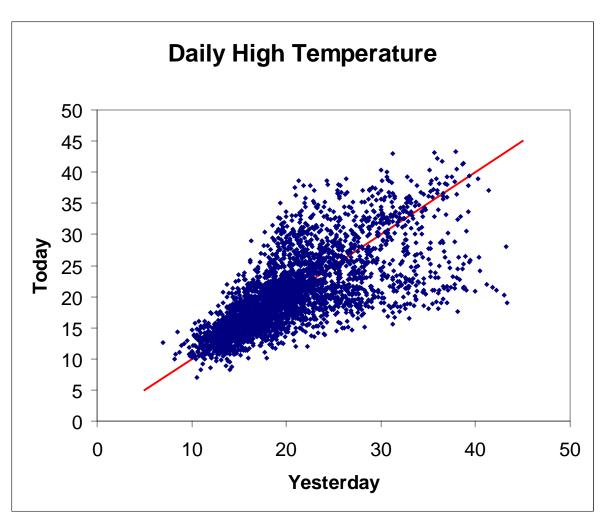
• Let $Y = \alpha + \beta x + u$ with $\alpha = \beta = 1$, $u \sim N(0,1)$.

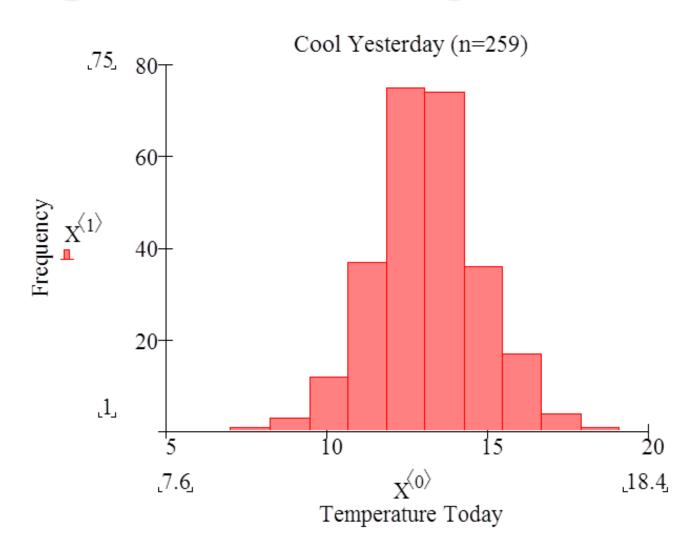


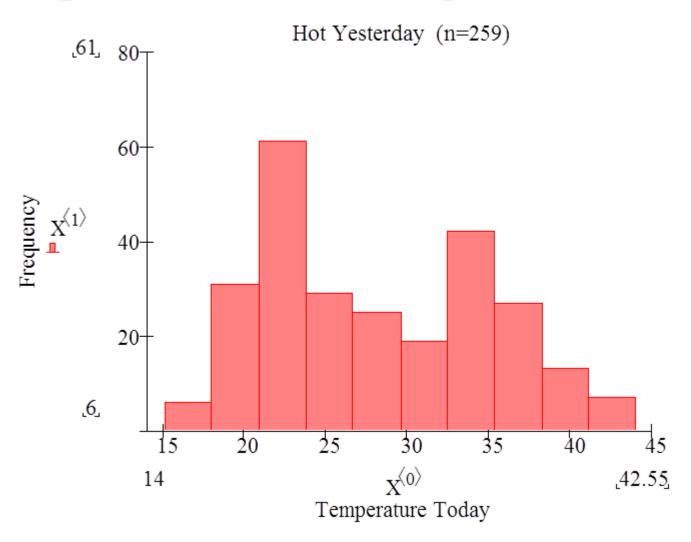
Example: Simple Linear Regression

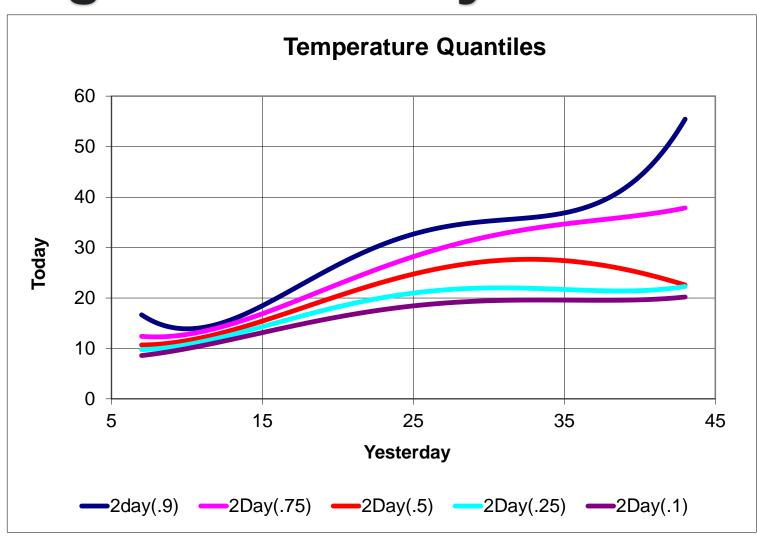
- Food Expenditurevs Income
- Engel's (1857)survey of 235Belgian households
- Change of slope at different quantiles?











General Quantile Regression

$$y_t = \beta_1 + \beta_2 x_{2t} + ... + \beta_k x_{kt} + u_t$$

$$Y=X \beta+u$$

$$y = X_i \beta + \varepsilon$$

Quantile Regression Estimation – 1

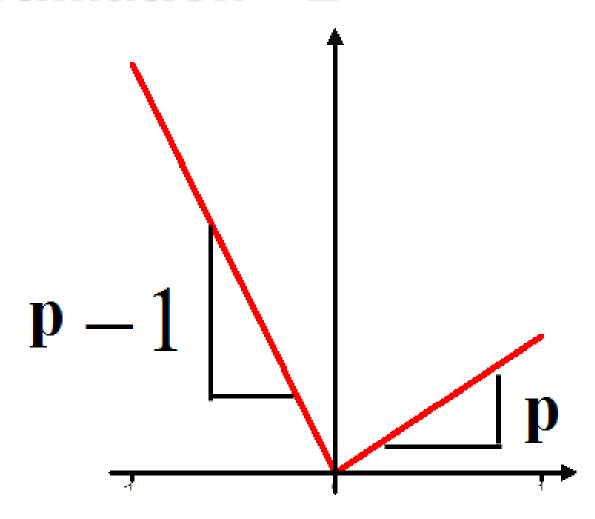
• The quantile regression coefficients are the solution to

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left[p - \frac{1}{2} - \frac{1}{2} \operatorname{sgn} \left(y_i - x_i^T \beta \right) \right] \left(y_i - x_i^T \beta \right)$$

$$\min_{\beta} \left[\sum_{\{i|y_i \geq X_i\beta\}} p |y_i - X_i\beta| + \sum_{\{i|y_i < X_i\beta\}} (1-p) |y_i - X_i\beta| \right]$$

Negative residuals Positive residuals

Quantile Regression Estimation – 2



Quantile Regression Estimation – 3

The k first order conditions are

$$\frac{1}{n} \sum_{i=1}^{n} \left\lceil p - \frac{1}{2} + \frac{1}{2} \operatorname{sgn} \left(y_i - x_i^T \hat{\beta}_p \right) \right\rceil x_i = 0$$

Quantile Regression Estimation – 4

- The fitted line will go through **k** data points.
- The # of negative residuals ≤ np ≤ # of neg residuals + # of zero residuals
- The computational algorithm is to set up the objective function as a linear programming problem
- The solution of the system need not be unique.

Quantile Regression Representation

$$Q(p | X_i, \beta(p)) = X_i^T \beta(p)$$

 $\beta(p)$ - coefficient vector, associated with pth-quantile

Regression quality

• Instead of the coefficient of determination it is used its counterpart - the pseudo-R²:

$$\hat{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0)) (Y_{i} - \beta_{0}(p) - X_{i1}^{T} \beta(p))$$

$$\overline{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0)) (Y_{i} - \beta_{0}(p))$$

$$R^{1}(p) = 1 - \frac{\hat{V}(p)}{\overline{V}(p)}$$

• Pseudo-R² is located between 0 and 1 and measures the regression quality for pth quantile.

Quantile Regression Properties

- Robust to outliers. As long as the sign of the residual does not change, any Y_i may be changed without shifting the conditional quantile line.
- The regression quantiles are correlated.

ROPERTIES

OF THE ESTIMATOR

Properties of the Estimator – 1

Asymptotic Distribution

$$\sqrt{n}\left(\hat{\beta}_{\theta}-\beta_{\theta}\right) \xrightarrow{L} N\left(0,\Lambda_{\theta}\right)$$

where

$$\Lambda_{\theta} = \theta(1 - \theta) \left(E \left[f(0 \mid x_i) x_i x_i^T \right] \right)^{-1} E \left[x_i x_i^T \right] \left(E \left[f(0 \mid x_i) x_i x_i^T \right] \right)^{-1}$$

• The covariance depends on the unknown f(.) and the value of the vector x at which the covariance is being evaluated.

Properties of the Estimator - 2

• When the error is independent of x then the coefficient covariance reduces to

$$\Lambda_{\theta} = \frac{\theta(1-\theta)}{f_u^2(0)} \left(E(xx^T) \right)^{-1}$$

where

$$\hat{E}(x x^T) = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

Properties of the Estimator – 3

- In general the quantile regression estimator *is more efficient than OLS*
- The efficient estimator requires knowledge of the *true error distribution*.

Coefficient Interpretation

$$\frac{\partial Q_{\theta}(y_i \mid x_i)}{\partial x_{ij}}$$

The marginal change in the pth conditional quantile due to a marginal change in the jth element of x. There is no guarantee that the ith person will remain in the same quantile after her x is changed.

Quantile Regression Hypothesis Testing

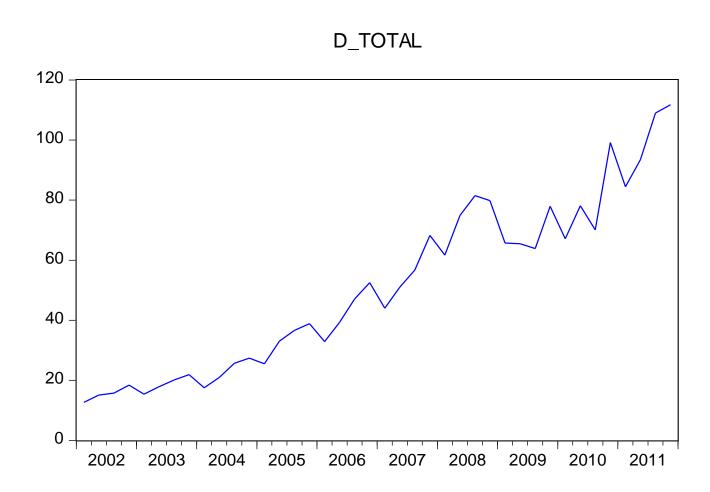
- Given asymptotic normality, one can construct asymptotic t-statistics for the coefficients
- The error term may be heteroscedastic. The test statistic is, in construction, similar to the Wald Test.
- A test for symmetry, also resembling a Wald Test, can be built relying on the invariance properties referred to above.

Heteroscedasticity

- Model: $y_i = \beta_0 + \beta_1 x_i + u_i$, with iid errors.
 - The quantiles are a vertical shift of one another.
- Model: $y_i = \beta_0 + \beta_1 x_i + \sigma(x_i) u_i$, errors are now heteroscedastic.
 - The quantiles now exhibit a location shift as well as a scale shift.
- Khmaladze-Koenker Test Statistic

EXAMPLE

Graph



Regression Estimation (OLS)

Dependent Variable: LOG(D_TOTAL)

Method: Least Squares

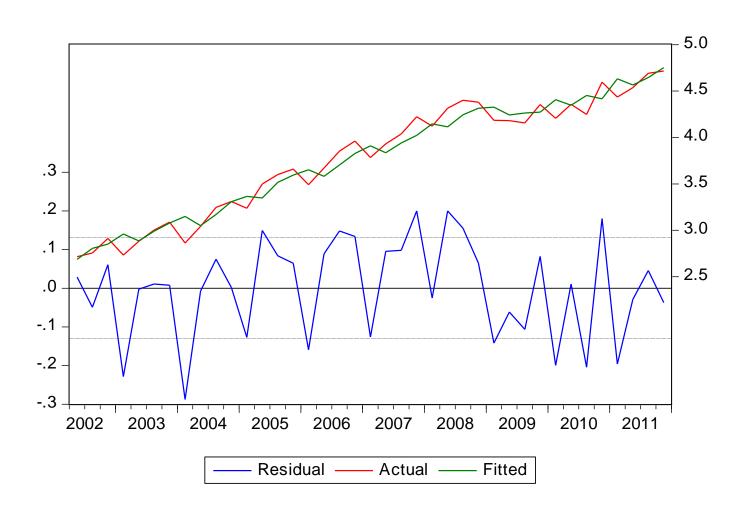
Date: 12/09/12 Time: 19:33

Sample (adjusted): 2002Q2 2011Q4

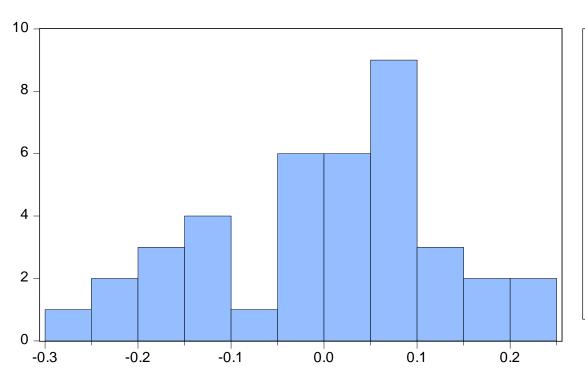
Included observations: 39 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LOG(D_TOTAL(-1))	1.259307 0.023130 0.552532	0.363393 0.007576 0.136375	3.465414 3.052982 4.051565	0.0014 0.0042 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.958307 0.955991 0.130529 0.613362 25.63246 413.7272 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	3.779234 0.622207 -1.160639 -1.032672 -1.114726 2.235377

Residuals



Normal distribution test



Series: Residuals Sample 2002Q2 2011Q4 Observations 39			
Mean	4.86e-16		
Median	0.010876		
Maximum	0.200128		
Minimum	-0.287605		
Std. Dev.	0.127048		
Skewness	-0.425670		
Kurtosis	2.347786		
Jarque-Bera	1.869015		
Probability	0.392779		

Regression Estimation (OLS)

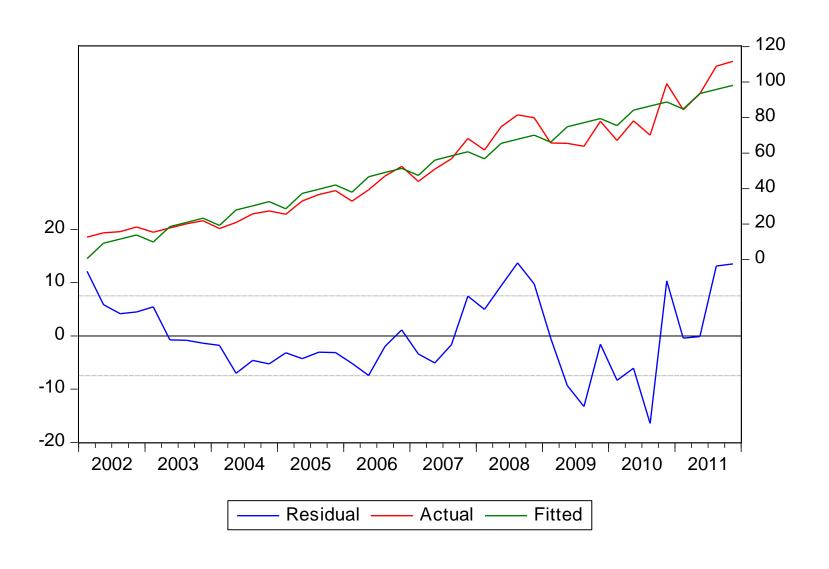
Dependent Variable: D_TOTAL

Method: Least Squares

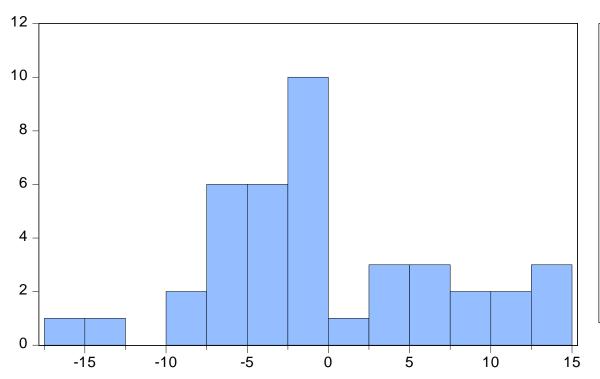
Date: 12/09/12 Time: 19:28 Sample: 2002Q1 2011Q4 Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @SEAS(1)	6.890478 2.341282 -6.341187	2.475560 0.103089 2.748173	2.783401 22.71133 -2.307419	0.0084 0.0000 0.0267
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.934972 0.931457 7.504971 2084.010 -135.8209 265.9931 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	50.96017 28.66603 6.941047 7.067713 6.986845 0.889234

Residuals



Normal distribution test



Series: Residuals Sample 2002Q1 2011Q4 Observations 40			
Mean	1.55e-14		
Median	-1.444590		
Maximum	13.72630		
Minimum	-16.42888		
Std. Dev.	7.310003		
Skewness	0.211776		
Kurtosis	2.593100		
Jarque-Bera	0.574940		
Probability	0.750159		

Quantile Regression Estimation

Dependent Variable: D_TOTAL

Method: Quantile Regression (tau = 0.8)

Date: 12/09/12 Time: 19:37 Sample: 2002Q1 2011Q4 Included observations: 40

Huber Sandwich Standard Errors & Covariance

Sparsity method: Kernel (Epanechnikov) using residuals

Bandwidth method: Hall-Sheather, bw=0.16717

Estimation successful but solution may not be unique

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @SEAS(1)	10.72879 2.560419 -10.47433	3.563134 0.155048 4.175887	3.011054 16.51375 -2.508290	0.0047 0.0000 0.0166
Pseudo R-squared Adjusted R-squared S.E. of regression Quantile dependent var Sparsity Prob(Quasi-LR stat)	0.750713 0.737238 11.02736 77.93354 31.50867 0.000000	Mean dependent var S.D. dependent var Objective Restr. objective Quasi-LR statistic		50.96017 28.66603 82.14514 329.5204 98.13779

Forecasting errors

Period	OLS	Quantile regression, p=0,8
1Q2012	2,39%	-0,87%
2Q2012	5,15%	-1,03%
(1Q+2Q)2012	3,79%	-0,95%

One more model

Dependent Variable: LOG(TAX_PDV)

Method: Least Squares

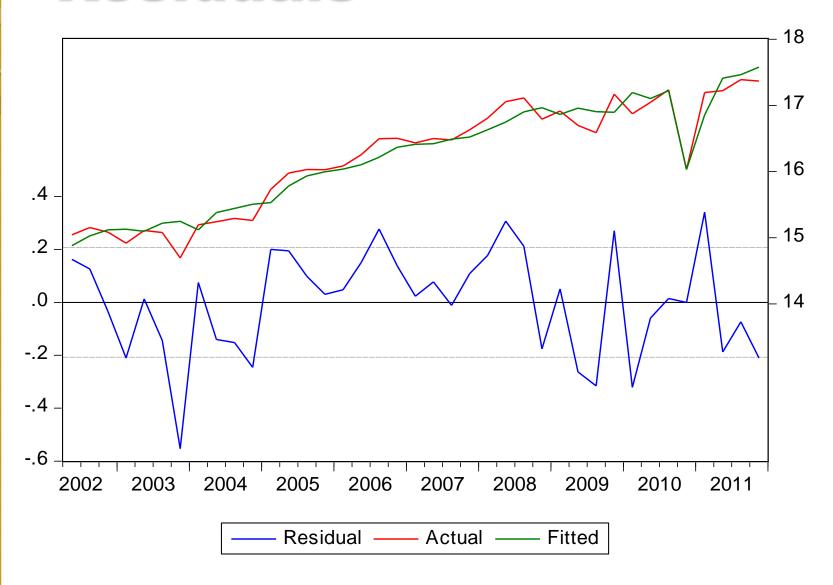
Date: 12/12/12 Time: 17:42

Sample (adjusted): 2002Q2 2011Q4

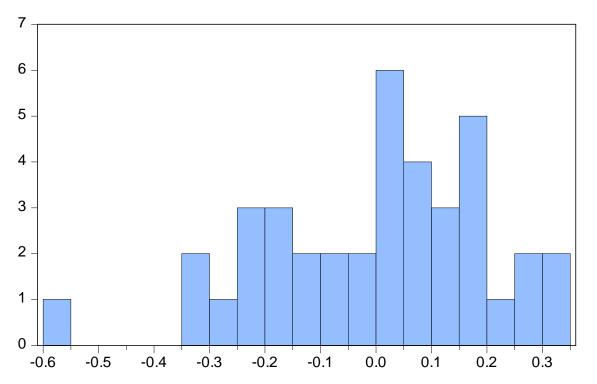
Included observations: 39 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LOG(TAX_PDV(-1)) Q	8.272613 0.040765 0.443702 -1.315177	1.584863 0.007814 0.106928 0.215333	5.219764 5.217266 4.149539 -6.107633	0.0000 0.0000 0.0002 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.941641 0.936639 0.207403 1.505561 8.122117 188.2458 0.000000	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	16.22334 0.823956 -0.211391 -0.040769 -0.150173 1.711073

Residuals



Normal distribution test



Series: Residuals Sample 2002Q2 2011Q4 Observations 39		
Mean Median Maximum Minimum Std. Dev. Skewness	2.57e-15 0.023661 0.341068 -0.553007 0.199048 -0.510951	
Kurtosis	2.958563	
Jarque-Bera Probability	1.699750 0.427468	

Quantile regression estimation

Dependent Variable: LOG(TAX_PDV)
Method: Quantile Regression (Median)

Date: 12/09/12 Time: 20:32

Sample (adjusted): 2002Q2 2011Q4

Included observations: 39 after adjustments Huber Sandwich Standard Errors & Covariance

Sparsity method: Kernel (Epanechnikov) using residuals

Bandwidth method: Hall-Sheather, bw=0.28649

Estimation successfully identifies unique optimal solution

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LOG(TAX_PDV(-1)) Q	5.611299 0.025320 0.628119 -1.291909	4.231787 0.021386 0.286227 0.238601	1.325988 1.183912 2.194481 -5.414524	0.1934 0.2444 0.0349 0.0000
Pseudo R-squared Adjusted R-squared S.E. of regression Quantile dependent var Sparsity Prob(Quasi-LR stat)	0.777288 0.758199 0.219122 16.47857 0.611171 0.000000	Mean depende S.D. depende Objective Restr. objectiv Quasi-LR stat	nt var ⁄e	16.22334 0.823956 3.001276 13.47605 137.1108

Forecasting errors

Period	OLS	Quantile regression, p=0,5
1Q2012	9,67%	-13,82%
2Q2012	28,57%	6,20%
(1Q+2Q)2012	19,02%	-3,92%

REVIEW

Problems - 1

- The distribution of Y, the "dependent" variable, conditional on the covariate X, *may have thick tails*.
- The conditional distribution of Y may be asymmetric.
- The conditional distribution of Y may not be unimodal.

Problems - 2

- ANOVA and regression provide information only about the conditional mean.
- Neither regression nor ANOVA will give us robust results. Outliers are problematic, the mean is pulled toward the skewed tail, multiple modes will not be revealed.
- More knowledge about the distribution of the statistic may be important.
- The covariates may shift not only the location or scale of the distribution, they may affect the shape as well.

Reasons to use quantiles rather than means

- Analysis of distribution rather than average
- Robustness
- Skewed data
- Interested in representative value
- Interested in tails of distribution
- Unequal variation of samples
- **E.g**. Income distribution is highly skewed so median relates more to typical person that mean.

Quantile Function

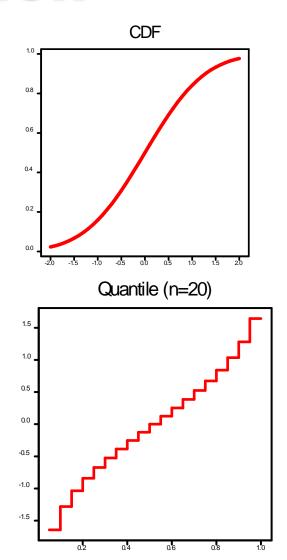
 Cumulative Distribution Function

$$F(y) = \operatorname{Prob}(Y \le y)$$

Quantile Function

$$Q(\tau) = \min(y : F(y) \le \tau)$$

Discrete step function

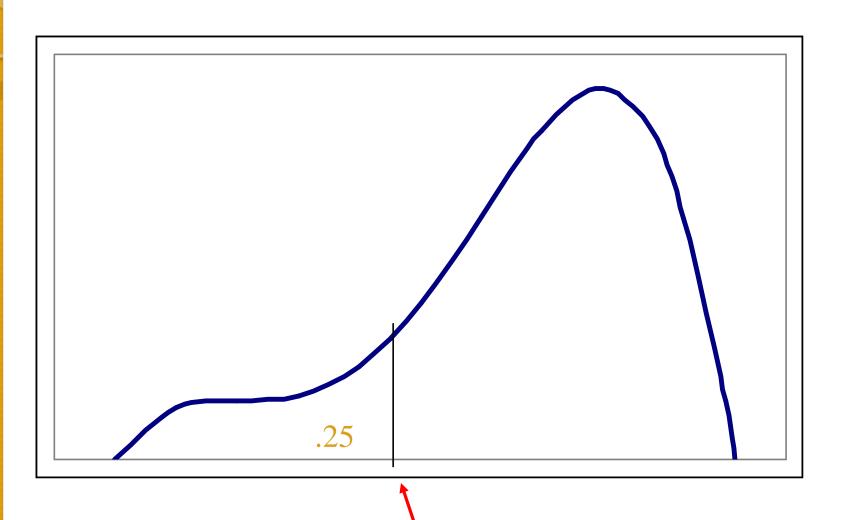


Quantile Regression Representation

$$Q(p|X_i,\beta(p)) = X_i^T \beta(p)$$

 $\beta(p)$ - coefficient vector, associated with pth-quantile

Quantile Regression Graph



Quantile Regression Estimation

• The quantile regression coefficients are the solution to

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left[p - \frac{1}{2} - \frac{1}{2} \operatorname{sgn} \left(y_i - x_i^T \beta \right) \right] \left(y_i - x_i^T \beta \right)$$

$$\min_{\beta} \left[\sum_{\{i \mid y_i \geq X_i \beta\}} p \left| y_i - X_i \beta \right| + \sum_{\{i \mid y_i < X_i \beta\}} (1 - p) \left| y_i - X_i \beta \right| \right]$$

Negative residuals Positive residuals

Regression quality

• Instead of the coefficient of determination it is used its counterpart - the pseudo-R²:

$$\hat{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0)) (Y_{i} - \beta_{0}(p) - X_{i1}^{T} \beta(p))$$

$$\bar{V}(p) = \min_{\beta(p)} \sum_{i} u(p - I(u < 0)) (Y_{i} - \beta_{0}(p))$$

$$R^{1}(p) = 1 - \frac{\hat{V}(p)}{\bar{V}(p)}$$

• Pseudo-R² is located between 0 and 1 and measures the regression quality for pth quantile.

Quantile Regression Properties

- Robust to outliers. As long as the sign of the residual does not change, any Y_i may be changed without shifting the conditional quantile line.
- The regression quantiles are correlated.

Coefficient Interpretation

$$\frac{\partial Q_{\theta}(y_i \mid x_i)}{\partial x_{ij}}$$

The marginal change in the Θ^{th} conditional quantile due to a marginal change in the j^{th} element of x. There is no guarantee that the i^{th} person will remain in the same quantile after her x is changed.

QUESTIONS?

THANK YOU FOR YOUR ATTENTION!

