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BINARY-VALUED 
DEPENDENT 
VARIABLES 



Binary Dependent 
Variables - 1

 We have worked extensively 
with regression models in which Y 
is continuous.
◦ We have predicted the effect of education and 

experience on earnings.
◦ We have predicted the effect of exogenous 

changes in price on 
quantity demanded.



Binary Dependent 
Variables – 2
However, our methods are 

inappropriate when the dependent 
variable takes on just a few discrete 
values.
◦ For example, we may be interested in 

the effect of a brand’s advertising on 
consumers’ decisions to buy that brand.



Why Do We Need A Different 
Model  Than Linear Regression?

Appropriate estimation of relations between variables 
depends on selecting an appropriate statistical model. 
There are many different types of estimation problems 
in political science.
 Continuous variables where the experiment can be 

viewed as draws from a normal distribution.
 Continuous Variables where the distribution is 

truncated or censored.
 Discrete Variables - for example, we might model 

labor force participation, whether to vote for or 
against, purchase or not purchase, run for office or 
not run for office, etc.



Type of Qualitative 
Response Models

◦ Qualitative dichotomy (e.g., vote/not vote type variables)-
We equate "no" with zero and "yes" with 1.  However, these 
are qualitative choices and the coding of 0-1 is arbitrary.  We 
could equally well code "no" as 1 and "yes" as zero. 
◦ Qualitative multichotomy (e.g., occupational choice by an 

individual)- Let 0 be a clerk, 1 an engineer, 2 an attorney, 3 a 
politician, 4 a college professor, and 5 other.  Here the 
codings are mere categories and the numbers have no real 
meaning.
◦ Rankings (e.g., opinions about a politician's job 

performance)- Strongly approve (5), approve (4), don't know 
(3), disapprove (2), strongly disapprove (1).  The values that 
are chosen are not quantitative, but merely an ordering of 
preferences or opinions.  The difference between outcomes is 
not necessarily the same from 5 to 4 as it is from 2 to 1.
◦ Count outcomes.



Binary Dependent 
Variables - 3

 Discrete-valued dependent 
variables are a special case 
that comes up sufficiently 
frequently to warrant its 
own special techniques.

 Here we will focus on 
dependent variables that 
can take on only 2 values, 
0 or 1 (dummy variables).



Example
Suppose we were to predict whether 
football teams win individual games, using 
the reported point spread from sports 
gambling authorities.



Example: model – 1
 Using the techniques we have developed 

so far, we might regress

 How would we interpret the 
coefficients and predicted values from 
such a model?

0 1

    where  indexes games

Win
i i iD Spread

i
β β ε= + +



Example: model - 2

Di
Win is either 0 or 1. It does not make 

sense to say that a 1 point increase in the 
spread increases Di

Win by b1. Di
Win can 

change only from 0 to 1 or from 1 to 0.

Instead of predicting Di
Win itself, we 

predict the probability that Di
Win = 1.

0 1
Win
i i iD Spreadβ β ε= + +



Binary Dependent Variables – 4

 It can make sense to say 
that a 1 point increase in 
the spread increases the 
probability of winning 
by 𝛽𝛽1. 

 Our predicted values of 
Di

Win are the probability 
of winning.

0 1
Win
i i iD Spreadβ β ε= + +



Binary Dependent 
Variables – 5

When we use a linear regression model to 
estimate probabilities, we call the model the 
linear probability model.

Di
Win = β0 + β1Spreadi +εi



Problems with LPM 
Regression

 OLS in this case is called the Linear 
Probability Model 

 Running regression produces some 
problems
◦ Errors are not distributed normally
◦ Errors are heteroskedastic
◦ Predicted Ys can be outside the 0.0-1.0 bounds 

required for probability



What Point Spreads Say 
About the Probability of 

Winning in Football? 



Model charactersistics
 Note that the table reports White 

Robust Estimated Standard Errors.
 The Linear Probability Model 

disturbances are heteroskedastic.
 Heteroskedasticity is the only violation 

of the Gauss–Markov assumptions 
inherent in using dummy variables as Y.



Model analysis - 1
 The linear probability model works 

fine mathematically.
 However, it faces a serious drawback 

in interpretation.
 If the point spread is 21 points, the team’s 

predicted probability of 
winning is: 

0.5 - 0.025 • 21 = -0.025



Model analysis – 2 
 If X = 21, E(Y | X ) = -0.025
 We predict that the team has a -2.5% 

probability of victory.
 If X = -21, we predict that the team has a 

102.5% probability of victory.



For Some X-Values, E(D|Xi) > 1 
For Some Other Values E(D|Xi) < 0



Requirements
 Linear regression methods predict values 

between -∞ and +∞.
 Probabilities must fall between 0 and 1.
 The linear probability model cannot 

guarantee sensible predictions.



Translator
We want a translator such that:
◦ The closer to -∞ is the value from 

our linear regression model, the 
closer to 0 is our predicted 
probability.
◦ The closer to +∞ is the value from 

our linear regression model, the 
closer to 1 is our predicted 
probability.
◦ No predicted probabilities are less 

than 0 or greater than 1.



A Graph of Probability of 
Success and X



Questions
 How can we construct such a translator?
 How can we estimate it?



PROBIT/LOGIT 
MODELS



Probit/Logit Models
 In common practice, econometricians use 

THREE such “translators”:
◦ probit
◦ logit
◦ gompit

 The differences between these models 
are subtle.

 For present purposes there is no practical 
difference between the models.



Prepositions
 Notice that the slope varies 

dramatically.
 When the team is very - very 

likely or very - very unlikely to 
win, a small change in the point 
spread has very little impact.

 When the team’s chance of 
victory is 50/50, a small change 
in the point spread can lead to a 
large change in probabilities.



A Graph of Probability of 
Success and X



Structure of Probit/Logit
Models - 1

Both the Probit and Logit models have the 
same basic structure.
◦ Estimate a latent variable Z using a linear 

model. Z ranges from negative infinity to 
positive infinity.
◦ Use a non-linear function to transform Z into 

a predicted Y value between 0 and 1.



Structure of Probit/Logit 
Model – 2 
 Suppose there is some 

unobserved continuous 
variable Z that can take on 
values from negative 
infinity to infinity.

 The higher E(Z) is, the 
more probable it is that a 
team will win, or a student 
will graduate, or a 
consumer will purchase a 
particular brand.



Latent variable – 1 
We call an unobserved variable, Z, that we 
use for intermediate calculations, a latent 
variable.



Latent variable – 2 
 Z is a linear function of the explanators:
 Our goal is to estimate these 𝛽𝛽i’s.

0 1 1 2 2 ...i i K Ki iZ X X Xβ β β β ε= + + + + +



Latent variable – 3 
 We will focus particularly on E(Z):

 It is convenient to consider the E(Z) 
separately from its stochastic component.

E(Z ) = β0 + β1X1i + β2 X2i + ...+ βK XKi



Probit/Logit/Gompit
difference

The predicted probability of Y is 
a non-linear function of E(Z).
◦ The probit model uses the 

standard normal cumulative 
density function.
◦ The logit model uses the logistic 

cumulative density function.
◦ The gompit model is based upon 

the CDF for the Type-I extreme 
value distribution. Note that this 
distribution is skewed.



Logistic Model
 We need a model that produces true 

probabilities
 The Logit, or cumulative logistic 

distribution offers one approach.
 This produces a sigmoid curve.
 Look at equation under 2 conditions:
◦ Xi = +∞
◦ Xi = -∞

0 1( )
1

1 ii XY
e β β− +=

+



Sigmoid curve

http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Logistic_function


Probability Ratio
 Note that

 Where 

0 1i iZ Xβ β= +

0 1( )
1 1

1 1 1i i

Z

i X Z Z
eP

e e eβ β− + −= = =
+ + +



Log Odds Ratio
 The logit is the log of the odds ratio, and 

is given by:

 This model gives us a coefficient that may 
be interpreted as a change in the weighted 
odds of the dependent variable

0 1ln
1

i
i i i

i

PL Z X
P

β β
 

= = = + − 



Estimation of Model
 We estimate this with maximum 

likelihood
 The significance tests are z statistics
 We can generate a Pseudo R2 which is an 

attempt to measure the percent of 
variation of the underlying logit function 
explained by the independent variables

 We test the full model with the Likelihood 
Ratio test (LR), which has a χ2

distribution with k degrees of freedom



Probit
 If we can assume that the dependent 

variable is actually the result of an 
underlying (and immeasurable) propensity 
or utility, we can use the cumulative normal 
probability function to estimate a Probit 
model

 Also, more appropriate if the categories (or 
their propensities) are likely to be normally 
distributed

 It looks just like a logit model in practice



The Cumulative Normal 
Density Function

 The normal distribution is given by:

 The Cumulative Normal Density Function 
is:







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The Standard Normal CDF
 We assume that there is an underlying 

threshold value (Ii) that if the case exceeds 
will be a 1, and 0 otherwise.

 We can standardize and estimate this as

20 1 /21( )
2

iX z
iF I e dz

β β

π
+ −

−∞
= ∫



Probit estimates

Again, maximum 
likelihood 
estimation

Again, a Pseudo R2

Again, a LR ratio 
with k degrees of 
freedom



Assumptions of Models
 All Y’s are in {0,1} set
 They are statistically independent
 No multicollinearity
 The P(Yi=1) is normal density for probit, 

and logistic function for logit



Graph



Prediction
 To predict the Prob(Y) for a given 

X value, begin by calculating the 
fitted Z value from the predicted linear 
coefficients.

 For example, if there is only one explanator 
X:

0 1
ˆ ˆ( ) i iE Z Z Xβ β= = +



Graph-prediction – 1 



Probit/Logit Model 
prediction

 Then use the nonlinear function to 
translate the fitted Z value into 
a Prob(Y ):

 ˆ( ) ( )Prob Y F Z=



Graph-prediction – 2 



ESTIMATING A 
PROBIT/LOGIT 

MODEL



Estimating a Probit/Logit
Model

Each model is estimated using a statistical 
method called the method of maximum 
likelihood.



Estimating a Probit/Logit
Model – 2 

You must specify three elements:
◦ The dummy outcome variable (whether the 

football team actually won game i)
◦ The explanator/s (the football team’s point 

spread for game i)
◦ Which nonlinear function F(•) you wish to use 

(you specify F when you tell the computer 
whether to use logit or probit)



Estimating a Probit/Logit
Model – 2 

 The computer then calculates the 𝛽𝛽i’s 
that assigns the highest probability to the 
outcomes that were observed.

 The computer can calculate the 𝛽𝛽i’s for 
you. You must know how to interpret 
them.



Model estimation



Analysis of Probit/Logit
Model

 The estimated slope of the point spread is 
-0.1098

 A 1-point increase in the point spread 
decreases E(Z ) by 0.1098 units.

 How do we interpret the slope dZ/dX ?



Analysis: Statistical 
significance

You can still read 
statistical significance 
from the slope dZ/dX. 
The z-statistic reported 
for probit or logit is 
analogous to OLS’s t-
statistic.



Analysis: Sign
 Sign: if dZ/dX is positive, then 

dProb(Y)/dX is also positive.
 The z-statistic on the point spread is -7.22, 

well exceeding the 5% critical value of 
1.96. The point spread is a statistically 
significant explanator of winning football 
games.

 The sign of the coefficient is negative. 
A higher point spread predicts a lower 
chance of winning.



Analysis: Magnitude

 the magnitude of dZ/dX has no 
particular interpretation. We care about 
the magnitude of dProb(Y)/dX.

 From the computer output for a 
probit/logit estimation, you can 
interpret the statistical significance and 
sign of each coefficient directly. 
Assessing magnitude is trickier.



Problems in Interpreting 
Magnitude

The estimated 
coefficient relates X to 
Z. We care about the 
relationship between X 
and Prob(Y = 1).

The effect of X on 
Prob(Y = 1) varies 
depending on Z.



First approach to 
assessing the magnitude

1. One approach is to predict 
Prob(Y ) for different values of X, 
to see how the probability changes 
as X changes.



Graph – 1 



But…
 the effect of a 1-unit 

change in X varies 
greatly, depending on 
the initial value of 
E(Z ).

 E(Z ) depends on the 
values of all 
explanators.



Graph – 2 



Example - 1
 For example, let’s consider the effect 

of 1 point change in the point spread 
at SPREAD = 5.88 points.

Note: In this example, there is only 
one explanator, SPREAD. If we had 
other explanators, we would have to 
specify their values for this 
calculation, as well.



Example – 2 
 Step One: Calculate the E(Z ) values 

for X = 5.88 and X = 6.88, using the 
fitted values.

 Step Two: Plug the E(Z ) values into 
the formula for the logistic density 
function.



Example – 3 

(5.88) 0 0.1098 5.88 0.6456
(6.88) 0 0.1098 6.88 0.7554

ˆexp( )ˆ( ) ˆ1 exp( )

(0.7554) (0.6456) 0.6560 0.6804 0.0243.

Z
Z

ZF Z
Z

F F

= − =
= − =

=
+

− = − = −



  

For the logit,   



Example - 4
Changing the point spread from 5.88 to 

6.88 predicts a 2.4 percentage point 
decrease in the team’s chance of victory.

Note that changing the point spread from 
8.88 to 9.88 predicts only a 2.1 
percentage point decrease.



Second approach to 
assessing the magnitude


1
1 1

ˆ( ) ( ) ˆ
ˆ ˆ

ˆ
ˆ

ˆ

ˆ

dProb Y dProb Y dZ dF
dX XdZ dZ

dF
dZ

Z

Z

Z

β= = 

Unfortunately,  varies, depending

    on . However, a sample value can

    be calculated for a representative 

    value. Typically, we use the 
    calcu Xlated at the mean values for each .



But…

 Some econometrics 
software packages can 
calculate such “pseudo-
slopes” for you.

 EViews does NOT have 
this function.



Example

The following table reports a probit on the 
probability of holding interest-bearing 
assets, as a function of total financial assets 
(LNFINAST) and dummy variables for 
having a pension (PENSION) or IRA 
(IRAS).



Example: Probit Estimates of The 
Probability of Holding Interest-Bearing 

Assets



Example: Analysis – 1 
 We can directly see that all three 

explanators are statistically significant 
(using the z-statistics).

 Also, all three explanators have positive 
coefficients. Increasing total financial 
assets, having a pension, and having an 
IRA all increase the probability of holding 
interest-bearing assets.



Example: Analysis – 2 
 To assess the magnitude of the coefficient 

on PENSION, we need to conduct a 
follow-up calculation.

 A reasonable calculation would be to 
predict Prob(Y ) when PENSION = 0 
and when PENSION = 1, holding the 
other explanators fixed at their sample 
means.



DERIVING 
PROBIT/LOGIT



Deriving Probit/Logit
 Where do the Logit and Probit estimators 

come from?
 How does the latent variable Z determine 

whether Y = 1 or Y = 0?
 What role do the     ‘s play?iε



Assumptions for Y

0 1 1 ..

1 0
0 0

We assume  acts "as if" 
    determined by latent variable . 

 if 
 if 

i

i i K Ki i

i i

i i

Y
Z

Z X X

Y Z
Y Z

β β β ε= + + + +

= >

= ≤



But…

 Note: the assumption that the breakpoint 
falls at 0 is arbitrary.

 β0 can adjust for whichever breakpoint 
you might choose to set.



Assumptions for residuals

 We assume we know the distribution 
of εi.

 In the probit model, we assume εi is 
distributed by the standard normal.

 In the logit model, we assume εi is 
distributed by the logistic.



Shocks – 1 
 The key to Probit/Logit: since we know 

the distribution of εi , we can calculate the 
probability that a given observation 
receives a shock εi that pushes Z into the 
Z > 0 or Z < 0 region.



Shocks – 2 
 Calculate
 Determine the regions of εi such that 

 Using the distribution of εi , calculate the 
probability of drawing an εi from each 
region.

E(Zi ) = β0 + β1X1i + ...+ βK XKi

 E(Zi )+εi < 0 or E(Zi )+εi > 0



Example – 1 

( ) 1
-1 ( ) 0

( ) 0 1

( -1)

i

i i i

i i i

i

E Z
E Z

E Z Y

Prob

ε ε
ε

ε

=
> + >

+ > =

>

Suppose 
If , then 
If , then 
For the standard normal distribution, 
what is the ?



Example – 2 
 For the standard normal distribution, 

Prob(εi > -1) ≈ 0.83
 If Zi = 1, we predict there is an 83% 

chance that Y = 1.



Example – 3 
 For another example, suppose we are 

estimating a probit and E(Zi) = -2. For 
what values of εi will Zi > 0 (so Y = 1)?

 If εi > 2, Zi > 0 (so Y = 1).
 For the standard normal distribution, 

Prob(εi) > 2  ≈ 0.025. We predict a 2.5% 
chance that Y = 1.



General solution – 1  

( ) ( )
( ) 1- ( )

1– ( ) (- )

More generally, suppose  has a 
cumulative density function 
That is, 

If  is symmetric, 

i

i

i

F
Prob a F a

Prob a F a
F F a F a

ε

ε
ε

< =
> =

=



General solution – 2

0 1 1

0 1 1

0 1 1

0 1 1

( 1)
( ( ))

ˆ ˆ ˆ( .. )
ˆ ˆ ˆ1 ( .. )

ˆ ˆ ˆ1 ( .. )
ˆ ˆ ˆ( .. )

More generally, 
  

    

           (for a symmetric distribution)

i

i i

i i K Ki

i i K Ki

i K Ki

i K Ki

Prob Y
Prob E Z

Prob X X

Prob X X

F X X

F X X

ε

ε β β β

ε β β β

β β β

β β β

=

= > −

= >− − −

= − <− − −

= − − − −

= + +



REVIEW



Our wish
 Frequently econometricians wish to 

estimate the probability that a discrete 
event occurs.

 The Linear Probability Model: estimating 
a probability by using a 
linear model (e.g. OLS) with a dummy 
variable for Y.



Problems
Problems with the Linear Probability 
Model:
◦ OLS disturbances are heteroskedastic.
◦ OLS predictions range from - ∞ to + ∞. 

A probability needs to range from 0 to 1.



Solution
 Probit or Logit
 Assume a latent variable, Z, mediates 

between the explanators and the dummy 
variable Y.

 The higher Z is, the higher the probability 
that Y = 1. 



Model
 To predict the Prob(Y ) for a given 

X value, begin by calculating the 
fitted Z value from the predicted 
linear coefficients, for example:for only 
one explanator X :

 Then use the nonlinear function to 
translate the fitted Z value into 
a Prob(Y ):

0 1
ˆ ˆ( ) i iE Z Z Xβ β= = +

 ˆ( ) ( )Prob Y F Z=



Prediction graph



Problems in Interpreting 
Magnitude

◦The estimated coefficient relates 
X to Z. We care about the 
relationship between X and 
Prob(Y = 1).
◦The effect of X on Prob(Y = 1) 
varies depending on Z.



Latent variable

 

We assume Yi  acts "as if" 
    determined by latent variable Z. 

Zi = β0 + β1X1i + ..+ βK XKi +εi

Yi =1 if Zi > 0
Yi = 0 if Zi ≤ 0



Assumptions
 We assume we know the distribution 

of εi.
 In the probit model, we assume εi is 

distributed by the standard normal.
 In the logit model, we assume εi is 

distributed by the logistic.



General solution

0 1 1
ˆ ˆ ˆ( 1) ( .. )i i K KiProb Y F X Xβ β β= = + +

           (for a symmetric distribution)



QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!
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